BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

728 related articles for article (PubMed ID: 26138476)

  • 1. Evf2 lncRNA/BRG1/DLX1 interactions reveal RNA-dependent inhibition of chromatin remodeling.
    Cajigas I; Leib DE; Cochrane J; Luo H; Swyter KR; Chen S; Clark BS; Thompson J; Yates JR; Kingston RE; Kohtz JD
    Development; 2015 Aug; 142(15):2641-52. PubMed ID: 26138476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sox2-
    Cajigas I; Chakraborty A; Lynam M; Swyter KR; Bastidas M; Collens L; Luo H; Ay F; Kohtz JD
    Development; 2021 Mar; 148(6):. PubMed ID: 33593819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SMARCA4 inactivating mutations cause concomitant Coffin-Siris syndrome, microphthalmia and small-cell carcinoma of the ovary hypercalcaemic type.
    Errichiello E; Mustafa N; Vetro A; Notarangelo LD; de Jonge H; Rinaldi B; Vergani D; Giglio SR; Morbini P; Zuffardi O
    J Pathol; 2017 Sep; 243(1):9-15. PubMed ID: 28608987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coffin-Siris syndrome is a SWI/SNF complex disorder.
    Tsurusaki Y; Okamoto N; Ohashi H; Mizuno S; Matsumoto N; Makita Y; Fukuda M; Isidor B; Perrier J; Aggarwal S; Dalal AB; Al-Kindy A; Liebelt J; Mowat D; Nakashima M; Saitsu H; Miyake N; Matsumoto N
    Clin Genet; 2014 Jun; 85(6):548-54. PubMed ID: 23815551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The variability of SMARCA4-related Coffin-Siris syndrome: Do nonsense candidate variants add to milder phenotypes?
    Li D; Ahrens-Nicklas RC; Baker J; Bhambhani V; Calhoun A; Cohen JS; Deardorff MA; Fernández-Jaén A; Kamien B; Jain M; Mckenzie F; Mintz M; Motter C; Niles K; Ritter A; Rogers C; Roifman M; Townshend S; Ward-Melver C; Schrier Vergano SA
    Am J Med Genet A; 2020 Sep; 182(9):2058-2067. PubMed ID: 32686290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evf2 (Dlx6as) lncRNA regulates ultraconserved enhancer methylation and the differential transcriptional control of adjacent genes.
    Berghoff EG; Clark MF; Chen S; Cajigas I; Leib DE; Kohtz JD
    Development; 2013 Nov; 140(21):4407-16. PubMed ID: 24089468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical correlations of mutations affecting six components of the SWI/SNF complex: detailed description of 21 patients and a review of the literature.
    Kosho T; Okamoto N; Ohashi H; Tsurusaki Y; Imai Y; Hibi-Ko Y; Kawame H; Homma T; Tanabe S; Kato M; Hiraki Y; Yamagata T; Yano S; Sakazume S; Ishii T; Nagai T; Ohta T; Niikawa N; Mizuno S; Kaname T; Naritomi K; Narumi Y; Wakui K; Fukushima Y; Miyatake S; Mizuguchi T; Saitsu H; Miyake N; Matsumoto N
    Am J Med Genet A; 2013 Jun; 161A(6):1221-37. PubMed ID: 23637025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The SWI/SNF BAF-A complex is essential for neural crest development.
    Chandler RL; Magnuson T
    Dev Biol; 2016 Mar; 411(1):15-24. PubMed ID: 26806701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatin Remodelers Interact with Eya1 and Six2 to Target Enhancers to Control Nephron Progenitor Cell Maintenance.
    Li J; Xu J; Jiang H; Zhang T; Ramakrishnan A; Shen L; Xu PX
    J Am Soc Nephrol; 2021 Nov; 32(11):2815-2833. PubMed ID: 34716243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Evf2 Ultraconserved Enhancer lncRNA Functionally and Spatially Organizes Megabase Distant Genes in the Developing Forebrain.
    Cajigas I; Chakraborty A; Swyter KR; Luo H; Bastidas M; Nigro M; Morris ER; Chen S; VanGompel MJW; Leib D; Kohtz SJ; Martina M; Koh S; Ay F; Kohtz JD
    Mol Cell; 2018 Sep; 71(6):956-972.e9. PubMed ID: 30146317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De-regulated expression of the BRG1 chromatin remodeling factor in bone marrow mesenchymal stromal cells induces senescence associated with the silencing of NANOG and changes in the levels of chromatin proteins.
    Squillaro T; Severino V; Alessio N; Farina A; Di Bernardo G; Cipollaro M; Peluso G; Chambery A; Galderisi U
    Cell Cycle; 2015; 14(8):1315-26. PubMed ID: 25724006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in SWI/SNF chromatin remodeling complex gene ARID1B cause Coffin-Siris syndrome.
    Santen GW; Aten E; Sun Y; Almomani R; Gilissen C; Nielsen M; Kant SG; Snoeck IN; Peeters EA; Hilhorst-Hofstee Y; Wessels MW; den Hollander NS; Ruivenkamp CA; van Ommen GJ; Breuning MH; den Dunnen JT; van Haeringen A; Kriek M
    Nat Genet; 2012 Mar; 44(4):379-80. PubMed ID: 22426309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerous BAF complex genes are mutated in Coffin-Siris syndrome.
    Miyake N; Tsurusaki Y; Matsumoto N
    Am J Med Genet C Semin Med Genet; 2014 Sep; 166C(3):257-61. PubMed ID: 25081545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A long noncoding RNA protects the heart from pathological hypertrophy.
    Han P; Li W; Lin CH; Yang J; Shang C; Nuernberg ST; Jin KK; Xu W; Lin CY; Lin CJ; Xiong Y; Chien H; Zhou B; Ashley E; Bernstein D; Chen PS; Chen HV; Quertermous T; Chang CP
    Nature; 2014 Oct; 514(7520):102-106. PubMed ID: 25119045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genotype-phenotype correlation of Coffin-Siris syndrome caused by mutations in SMARCB1, SMARCA4, SMARCE1, and ARID1A.
    Kosho T; Okamoto N;
    Am J Med Genet C Semin Med Genet; 2014 Sep; 166C(3):262-75. PubMed ID: 25168959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Casein kinase 2-mediated phosphorylation of Brahma-related gene 1 controls myoblast proliferation and contributes to SWI/SNF complex composition.
    Padilla-Benavides T; Nasipak BT; Paskavitz AL; Haokip DT; Schnabl JM; Nickerson JA; Imbalzano AN
    J Biol Chem; 2017 Nov; 292(45):18592-18607. PubMed ID: 28939766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive molecular study on Coffin-Siris and Nicolaides-Baraitser syndromes identifies a broad molecular and clinical spectrum converging on altered chromatin remodeling.
    Wieczorek D; Bögershausen N; Beleggia F; Steiner-Haldenstätt S; Pohl E; Li Y; Milz E; Martin M; Thiele H; Altmüller J; Alanay Y; Kayserili H; Klein-Hitpass L; Böhringer S; Wollstein A; Albrecht B; Boduroglu K; Caliebe A; Chrzanowska K; Cogulu O; Cristofoli F; Czeschik JC; Devriendt K; Dotti MT; Elcioglu N; Gener B; Goecke TO; Krajewska-Walasek M; Guillén-Navarro E; Hayek J; Houge G; Kilic E; Simsek-Kiper PÖ; López-González V; Kuechler A; Lyonnet S; Mari F; Marozza A; Mathieu Dramard M; Mikat B; Morin G; Morice-Picard F; Ozkinay F; Rauch A; Renieri A; Tinschert S; Utine GE; Vilain C; Vivarelli R; Zweier C; Nürnberg P; Rahmann S; Vermeesch J; Lüdecke HJ; Zeschnigk M; Wollnik B
    Hum Mol Genet; 2013 Dec; 22(25):5121-35. PubMed ID: 23906836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coffin-Siris syndrome: phenotypic evolution of a novel SMARCA4 mutation.
    Tzeng M; du Souich C; Cheung HW; Boerkoel CF
    Am J Med Genet A; 2014 Jul; 164A(7):1808-14. PubMed ID: 24700502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterozygosity for ARID2 loss-of-function mutations in individuals with a Coffin-Siris syndrome-like phenotype.
    Bramswig NC; Caluseriu O; Lüdecke HJ; Bolduc FV; Noel NC; Wieland T; Surowy HM; Christen HJ; Engels H; Strom TM; Wieczorek D
    Hum Genet; 2017 Mar; 136(3):297-305. PubMed ID: 28124119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De Novo Mutations in CHD4, an ATP-Dependent Chromatin Remodeler Gene, Cause an Intellectual Disability Syndrome with Distinctive Dysmorphisms.
    Weiss K; Terhal PA; Cohen L; Bruccoleri M; Irving M; Martinez AF; Rosenfeld JA; Machol K; Yang Y; Liu P; Walkiewicz M; Beuten J; Gomez-Ospina N; Haude K; Fong CT; Enns GM; Bernstein JA; Fan J; Gotway G; Ghorbani M; ; van Gassen K; Monroe GR; van Haaften G; Basel-Vanagaite L; Yang XJ; Campeau PM; Muenke M
    Am J Hum Genet; 2016 Oct; 99(4):934-941. PubMed ID: 27616479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.