These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 26138575)

  • 1. Role of Open Source Tools and Resources in Virtual Screening for Drug Discovery.
    Karthikeyan M; Vyas R
    Comb Chem High Throughput Screen; 2015; 18(6):528-43. PubMed ID: 26138575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charting, navigating, and populating natural product chemical space for drug discovery.
    Lachance H; Wetzel S; Kumar K; Waldmann H
    J Med Chem; 2012 Jul; 55(13):5989-6001. PubMed ID: 22537178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepScreening: a deep learning-based screening web server for accelerating drug discovery.
    Liu Z; Du J; Fang J; Yin Y; Xu G; Xie L
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 31608949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virtual screening methods as tools for drug lead discovery from large chemical libraries.
    Ma XH; Zhu F; Liu X; Shi Z; Zhang JX; Yang SY; Wei YQ; Chen YZ
    Curr Med Chem; 2012; 19(32):5562-71. PubMed ID: 23016548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small molecule databases and chemical descriptors useful in chemoinformatics: an overview.
    Gozalbes R; Pineda-Lucena A
    Comb Chem High Throughput Screen; 2011 Jul; 14(6):548-458. PubMed ID: 21521149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scopy: an integrated negative design python library for desirable HTS/VS database design.
    Yang ZY; Yang ZJ; Lu AP; Hou TJ; Cao DS
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32892221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enabling the hypothesis-driven prioritization of ligand candidates in big databases: Screenlamp and its application to GPCR inhibitor discovery for invasive species control.
    Raschka S; Scott AM; Liu N; Gunturu S; Huertas M; Li W; Kuhn LA
    J Comput Aided Mol Des; 2018 Mar; 32(3):415-433. PubMed ID: 29383467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries.
    Ma XH; Jia J; Zhu F; Xue Y; Li ZR; Chen YZ
    Comb Chem High Throughput Screen; 2009 May; 12(4):344-57. PubMed ID: 19442064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical Patterns of Proteasome Inhibitors: Lessons Learned from Two Decades of Drug Design.
    Guedes RA; Aniceto N; Andrade MAP; Salvador JAR; Guedes RC
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31731563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated Inference of Chemical Discriminants of Biological Activity.
    Raschka S; Scott AM; Huertas M; Li W; Kuhn LA
    Methods Mol Biol; 2018; 1762():307-338. PubMed ID: 29594779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FilTer BaSe: A web accessible chemical database for small compound libraries.
    Kolte BS; Londhe SR; Solanki BR; Gacche RN; Meshram RJ
    J Mol Graph Model; 2018 Mar; 80():95-103. PubMed ID: 29328995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [In silico drug discovery based on the integration of bioinformatics and chemoinformatics].
    Okuno Y
    Yakugaku Zasshi; 2008 Nov; 128(11):1645-51. PubMed ID: 18981700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Function and structure-based screening of compounds, peptides and proteins to identify drug candidates.
    Malik V; Dhanjal JK; Kumari A; Radhakrishnan N; Singh K; Sundar D
    Methods; 2017 Dec; 131():10-21. PubMed ID: 28843611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Toxicology Methods in Chemical Library Design and High-Throughput Screening Hit Validation.
    Hevener KE
    Methods Mol Biol; 2018; 1800():275-285. PubMed ID: 29934898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating pharmacophore mapping, virtual screening, density functional theory, molecular simulation towards the discovery of novel apolipoprotein (apoE ε4) inhibitors.
    Johari S; Sharma A; Sinha S; Das A
    Comput Biol Chem; 2019 Apr; 79():83-90. PubMed ID: 30743160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New horizons in antimalarial drug discovery in the last decade by chemoinformatic approaches.
    Ambre PK; Wavhale RD; Coutinho EC
    Comb Chem High Throughput Screen; 2015; 18(2):129-50. PubMed ID: 25543682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating virtual screening and combinatorial chemistry for accelerated drug discovery.
    López-Vallejo F; Caulfield T; Martínez-Mayorga K; Giulianotti MA; Nefzi A; Houghten RA; Medina-Franco JL
    Comb Chem High Throughput Screen; 2011 Jul; 14(6):475-87. PubMed ID: 21521151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning Approaches Toward Building Predictive Models for Small Molecule Modulators of miRNA and Its Utility in Virtual Screening of Molecular Databases.
    Periwal V; Scaria V
    Methods Mol Biol; 2017; 1517():155-168. PubMed ID: 27924481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of support vector machine to three-dimensional shape-based virtual screening using comprehensive three-dimensional molecular shape overlay with known inhibitors.
    Sato T; Yuki H; Takaya D; Sasaki S; Tanaka A; Honma T
    J Chem Inf Model; 2012 Apr; 52(4):1015-26. PubMed ID: 22424085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fragment virtual screening based on Bayesian categorization for discovering novel VEGFR-2 scaffolds.
    Zhang Y; Jiao Y; Xiong X; Liu H; Ran T; Xu J; Lu S; Xu A; Pan J; Qiao X; Shi Z; Lu T; Chen Y
    Mol Divers; 2015 Nov; 19(4):895-913. PubMed ID: 26022686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.