These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 2613858)

  • 1. Pathogenesis of exencephaly and cranioschisis induced in the rat after neural tube closure: role of the mesenchyme.
    Padmanabhan R
    J Craniofac Genet Dev Biol; 1989; 9(3):239-55. PubMed ID: 2613858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light microscopic studies on the pathogenesis of exencephaly and cranioschisis induced in the rat after neural tube closure.
    Padmanabhan R
    Teratology; 1988 Jan; 37(1):29-36. PubMed ID: 3347905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron-microscopic studies on the pathogenesis of exencephaly and cranioschisis induced in the rat after neural tube closure: role of the neuroepithelium and choroid plexus.
    Padmanabhan R
    Acta Anat (Basel); 1990; 137(1):5-18. PubMed ID: 2305630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is exencephaly the forerunner of anencephaly? An experimental study on the effect of prolonged gestation on the exencephaly induced after neural tube closure in the rat.
    Padmanabhan R
    Acta Anat (Basel); 1991; 141(2):182-92. PubMed ID: 1746228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scanning-electron-microscopic studies on the pathogenesis of exencephaly and cranioschisis induced in the rat after neural tube closure.
    Padmanabhan R
    Acta Anat (Basel); 1990; 138(2):97-110. PubMed ID: 2368612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exencephaly and axial skeletal malformations induced by maternal administration of sodium valproate in the MF1 mouse.
    Padmanabhan R; Hameed MS
    J Craniofac Genet Dev Biol; 1994; 14(3):192-205. PubMed ID: 7852547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorambucil-induced postclosure exencephaly and axial skeletal abnormalities in rat fetuses.
    Padmanabhan R; Samad PA
    Reprod Toxicol; 1999; 13(3):189-201. PubMed ID: 10378468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methanol-induced neural tube defects in mice: pathogenesis during neurulation.
    Bolon B; Welsch F; Morgan KT
    Teratology; 1994 Jun; 49(6):497-517. PubMed ID: 7747271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental induction of cranioschisis aperta and exencephaly after neural tube closure. A rat model.
    Padmanabhan R
    J Neurol Sci; 1984; 66(2-3):235-43. PubMed ID: 6530614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of 2-methoxyethanol on mouse neurulation.
    Terry KK; Stedman DB; Bolon B; Welsch F
    Teratology; 1996 Nov; 54(5):219-29. PubMed ID: 9035343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the mouse neuroepithelium associated with cadmium-induced neural tube defects.
    Webster WS; Messerle K
    Teratology; 1980 Feb; 21(1):79-88. PubMed ID: 6247774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental phase alters dosimetry-teratogenicity relationship for 2-methoxyethanol in CD-1 mice.
    Terry KK; Elswick BA; Stedman DB; Welsch F
    Teratology; 1994 Mar; 49(3):218-27. PubMed ID: 8059429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental study of neural tube closure in a mouse stock with a high incidence of exencephaly.
    Macdonald KB; Juriloff DM; Harris MJ
    Teratology; 1989 Feb; 39(2):195-213. PubMed ID: 2928966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histological study of the cranial neural folds of mice genetically liable to exencephaly.
    Gunn TM; Juriloff DM; Vogl W; Harris MJ; Miller JE
    Teratology; 1993 Nov; 48(5):459-71. PubMed ID: 8303615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic-induced exencephaly in the mouse and associated lesions occurring during neurulation.
    Morrissey RE; Mottet NK
    Teratology; 1983 Dec; 28(3):399-411. PubMed ID: 6665738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetically determined absence of an initiation site of cranial neural tube closure is causally related to exencephaly in SELH/Bc mouse embryos.
    Gunn TM; Juriloff DM; Harris MJ
    Teratology; 1995 Aug; 52(2):101-8. PubMed ID: 8588181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light microscopic and ultrastructural observations in advanced stages of induced exencephaly and spinal bifida.
    Peters PW; Dormans JA; Geelen JA
    Teratology; 1979 Apr; 19(2):183-95. PubMed ID: 89706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the embryonic phenotype of Bent tail, a mouse model for X-linked neural tube defects.
    Franke B; Klootwijk R; Hekking JW; de Boer RT; ten Donkelaar HJ; Mariman EC; van Straaten HW
    Anat Embryol (Berl); 2003 Oct; 207(3):255-62. PubMed ID: 14523648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axial skeletal malformations associated with cranioschisis aperta and exencephaly. The result of experimental intervention after the neural tube closure in rats.
    Padmanabhan R; Singh S
    Acta Orthop Scand; 1983 Feb; 54(1):104-12. PubMed ID: 6829274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 5-Azacytidine-induced exencephaly in mice.
    Takeuchi IK; Takeuchi YK
    J Anat; 1985 May; 140 ( Pt 3)(Pt 3):403-12. PubMed ID: 2415500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.