BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26138670)

  • 1. Atomic and molecular analysis highlights the biophysics of unprotonated and protonated retinal in UV and scotopic vision.
    Kubli-Garfias C; Vázquez-Ramírez R; Cabrera-Vivas BM; Gómez-Reyes B; Ramírez JC
    Photochem Photobiol Sci; 2015 Sep; 14(9):1660-72. PubMed ID: 26138670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light activation of the isomerization and deprotonation of the protonated Schiff base retinal.
    Kubli-Garfias C; Salazar-Salinas K; Perez-Angel EC; Seminario JM
    J Mol Model; 2011 Oct; 17(10):2539-47. PubMed ID: 21207087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral properties and isomerisation path of retinal in C1C2 channelrhodopsin.
    Dokukina I; Weingart O
    Phys Chem Chem Phys; 2015 Oct; 17(38):25142-50. PubMed ID: 26351704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assignment of the hydrogen-out-of-plane and -in-plane vibrations of the retinal chromophore in the K intermediate of pharaonis phoborhodopsin.
    Furutani Y; Sudo Y; Wada A; Ito M; Shimono K; Kamo N; Kandori H
    Biochemistry; 2006 Oct; 45(39):11836-43. PubMed ID: 17002284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 11-cis-retinal protonated Schiff base: influence of the protein environment on the geometry of the rhodopsin chromophore.
    Sugihara M; Buss V; Entel P; Elstner M; Frauenheim T
    Biochemistry; 2002 Dec; 41(51):15259-66. PubMed ID: 12484764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations of retinal in rhodopsin: from the dark-adapted state towards lumirhodopsin.
    Lemaître V; Yeagle P; Watts A
    Biochemistry; 2005 Sep; 44(38):12667-80. PubMed ID: 16171381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of photoisomerization of the rhodopsin chromophore.
    Vassilieva-Vashakmadze NS; Gakhokidze RA; Gakhokidze AR
    Biochemistry (Mosc); 2008 Jun; 73(6):730-2. PubMed ID: 18620541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrational analysis of the all-trans retinal protonated Schiff base.
    Smith SO; Myers AB; Mathies RA; Pardoen JA; Winkel C; van den Berg EM; Lugtenburg J
    Biophys J; 1985 May; 47(5):653-64. PubMed ID: 4016185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acceleration of the Z to E photoisomerization of penta-2,4-dieniminium by hydrogen out-of-plane motion: theoretical study on a model system of retinal protonated Schiff base.
    Sumita M; Ryazantsev MN; Saito K
    Phys Chem Chem Phys; 2009 Aug; 11(30):6406-14. PubMed ID: 19809672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin.
    Ikeda D; Furutani Y; Kandori H
    Biochemistry; 2007 May; 46(18):5365-73. PubMed ID: 17428036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TD-DFT calculations of the potential energy curves for the trans-cis photo-isomerization of protonated Schiff base of retinal.
    Tachikawa H; Iyama T
    J Photochem Photobiol B; 2004 Oct; 76(1-3):55-60. PubMed ID: 15488716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling photoisomerization of retinal to directional transport in bacteriorhodopsin.
    Luecke H; Schobert B; Cartailler JP; Richter HT; Rosengarth A; Needleman R; Lanyi JK
    J Mol Biol; 2000 Jul; 300(5):1237-55. PubMed ID: 10903866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constraints of opsin structure on the ligand-binding site: studies with ring-fused retinals.
    Hirano T; Lim IT; Kim DM; Zheng XG; Yoshihara K; Oyama Y; Imai H; Shichida Y; Ishiguro M
    Photochem Photobiol; 2002 Dec; 76(6):606-15. PubMed ID: 12511040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Origin of Bond Selectivity and Excited-State Reactivity in Retinal Analogues.
    Schapiro I
    J Phys Chem A; 2016 May; 120(19):3353-65. PubMed ID: 27082638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic investigation, natural bond orbital analysis, HOMO-LUMO and thermodynamic functions of 2-tert-butyl-5-methyl anisole using DFT (B3LYP) calculations.
    Balachandran V; Santhi G; Karpagam V; Revathi B; Karabacak M
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():451-63. PubMed ID: 25448946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base.
    Tsutsui K; Imai H; Shichida Y
    Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex thermal behavior of 11-cis-retinal, the ligand of the visual pigments.
    Silva López C; Alvarez R; Domínguez M; Nieto Faza O; de Lera AR
    J Org Chem; 2009 Feb; 74(3):1007-13. PubMed ID: 19178351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics investigation of primary photoinduced events in the activation of rhodopsin.
    Saam J; Tajkhorshid E; Hayashi S; Schulten K
    Biophys J; 2002 Dec; 83(6):3097-112. PubMed ID: 12496081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational analysis, spectroscopic study (FT-IR, FT-Raman, UV, 1H and 13C NMR), molecular orbital energy and NLO properties of 5-iodosalicylic acid.
    Karaca C; Atac A; Karabacak M
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():295-305. PubMed ID: 25448933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and theoretical (FT-IR, FT-Raman, UV-vis, NMR) spectroscopic analysis and first order hyperpolarizability studies of non-linear optical material: (2E)-3-[4-(methylsulfanyl) phenyl]-1-(4-nitrophenyl) prop-2-en-1-one using density functional theory.
    Kumar A; Deval V; Tandon P; Gupta A; Deepak D'silva E
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Sep; 130():41-53. PubMed ID: 24762572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.