These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 26138814)

  • 1. The aromatic stacking interactions between proteins and their macromolecular ligands.
    Rahman MM; Muhseen ZT; Junaid M; Zhang H
    Curr Protein Pept Sci; 2015; 16(6):502-12. PubMed ID: 26138814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence and stability of lone pair-π stacking interactions between ribose and nucleobases in functional RNAs.
    Chawla M; Chermak E; Zhang Q; Bujnicki JM; Oliva R; Cavallo L
    Nucleic Acids Res; 2017 Nov; 45(19):11019-11032. PubMed ID: 28977572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the importance of the aromatic amino-acid residues as hot-spots.
    Moreira IS; Martins JM; Ramos RM; Fernandes PA; Ramos MJ
    Biochim Biophys Acta; 2013 Jan; 1834(1):404-14. PubMed ID: 22842194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of aromatic amino acids in protein-nucleic acid recognition.
    Baker CM; Grant GH
    Biopolymers; 2007 Apr 5-15; 85(5-6):456-70. PubMed ID: 17219397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring and exploiting polar-π interactions with fluorinated aromatic amino acids.
    Pace CJ; Gao J
    Acc Chem Res; 2013 Apr; 46(4):907-15. PubMed ID: 23095018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aromatic interactions at the ligand-protein interface: Implications for the development of docking scoring functions.
    Brylinski M
    Chem Biol Drug Des; 2018 Feb; 91(2):380-390. PubMed ID: 28816025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stacking efficiency and flexibility analysis of aromatic amino acids in cap-binding proteins.
    Worch R; Stolarski R
    Proteins; 2008 Jun; 71(4):2026-37. PubMed ID: 18186485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong Enrichment of Aromatic and Sulfur-Containing Residues in Ligand-Protein Binding Sites.
    El Hage K; Zoete V
    J Chem Inf Model; 2019 Nov; 59(11):4921-4928. PubMed ID: 31661621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Classification and Contribution Analysis of Aromatic Clusters in Protein-Ligand Complexes].
    Yamasaki H; Koseki J; Nishibata Y; Hirono S
    Yakugaku Zasshi; 2016; 136(1):97-9. PubMed ID: 26725675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aromatic residues link binding and function of intrinsically disordered proteins.
    Espinoza-Fonseca LM
    Mol Biosyst; 2012 Jan; 8(1):237-46. PubMed ID: 21863198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lone pair-aromatic interactions: to stabilize or not to stabilize.
    Egli M; Sarkhel S
    Acc Chem Res; 2007 Mar; 40(3):197-205. PubMed ID: 17370991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-Axis Alignment of Protein Nanocage Assemblies from 2D to 3D through the Aromatic Stacking Interactions of Amino Acid Residues.
    Zhou K; Zang J; Chen H; Wang W; Wang H; Zhao G
    ACS Nano; 2018 Nov; 12(11):11323-11332. PubMed ID: 30265511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Base-intercalated and base-wedged stacking elements in 3D-structure of RNA and RNA-protein complexes.
    Baulin E; Metelev V; Bogdanov A
    Nucleic Acids Res; 2020 Sep; 48(15):8675-8685. PubMed ID: 32687167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the biological backbone on stacking interactions at DNA-protein interfaces: the interplay between the backbone···π and π···π components.
    Churchill CD; Rutledge LR; Wetmore SD
    Phys Chem Chem Phys; 2010 Nov; 12(43):14515-26. PubMed ID: 20927465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular determinants for ATP-binding in proteins: a data mining and quantum chemical analysis.
    Mao L; Wang Y; Liu Y; Hu X
    J Mol Biol; 2004 Feb; 336(3):787-807. PubMed ID: 15095988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stacking interactions between carbohydrate and protein quantified by combination of theoretical and experimental methods.
    Wimmerová M; Kozmon S; Nečasová I; Mishra SK; Komárek J; Koča J
    PLoS One; 2012; 7(10):e46032. PubMed ID: 23056230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying the π-Stacking Interactions in Nitroarene Binding Sites of Proteins.
    An Y; Bloom JW; Wheeler SE
    J Phys Chem B; 2015 Nov; 119(45):14441-50. PubMed ID: 26491883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive recognition by nucleic acid aptamers.
    Hermann T; Patel DJ
    Science; 2000 Feb; 287(5454):820-5. PubMed ID: 10657289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insight into the tetramerization of an iterative ketoreductase siam through aromatic residues in the interfaces.
    Wang H; Zhang H; Zou Y; Mi Y; Lin S; Xie Z; Yan Y; Zhang H
    PLoS One; 2014; 9(6):e97996. PubMed ID: 24901639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular architecture of protein-RNA recognition sites.
    Barik A; C N; Pilla SP; Bahadur RP
    J Biomol Struct Dyn; 2015; 33(12):2738-51. PubMed ID: 25562181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.