These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
358 related articles for article (PubMed ID: 26138921)
1. Integrative network analysis for survival-associated gene-gene interactions across multiple genomic profiles in ovarian cancer. Jeong HH; Leem S; Wee K; Sohn KA J Ovarian Res; 2015 Jul; 8():42. PubMed ID: 26138921 [TBL] [Abstract][Full Text] [Related]
2. Integrative regression network for genomic association study. Vangimalla RR; Jeong HH; Sohn KA BMC Med Genomics; 2016 Aug; 9 Suppl 1(Suppl 1):31. PubMed ID: 27535739 [TBL] [Abstract][Full Text] [Related]
3. Investigating the utility of clinical outcome-guided mutual information network in network-based Cox regression. Jeong HH; Kim S; Wee K; Sohn KA BMC Syst Biol; 2015; 9 Suppl 1(Suppl 1):S8. PubMed ID: 25708115 [TBL] [Abstract][Full Text] [Related]
4. Integrative network analysis of TCGA data for ovarian cancer. Zhang Q; Burdette JE; Wang JP BMC Syst Biol; 2014 Dec; 8():1338. PubMed ID: 25551281 [TBL] [Abstract][Full Text] [Related]
5. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer. Kim D; Li R; Dudek SM; Ritchie MD J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077 [TBL] [Abstract][Full Text] [Related]
6. Integrating multiple types of data to identify microRNA-gene co-modules. Zhang S Methods Mol Biol; 2013; 1049():215-29. PubMed ID: 23913219 [TBL] [Abstract][Full Text] [Related]
7. Relative impact of multi-layered genomic data on gene expression phenotypes in serous ovarian tumors. Sohn KA; Kim D; Lim J; Kim JH BMC Syst Biol; 2013 Dec; 7 Suppl 6(Suppl 6):S9. PubMed ID: 24521303 [TBL] [Abstract][Full Text] [Related]
9. Identification of ovarian cancer subtype-specific network modules and candidate drivers through an integrative genomics approach. Zhang D; Chen P; Zheng CH; Xia J Oncotarget; 2016 Jan; 7(4):4298-309. PubMed ID: 26735889 [TBL] [Abstract][Full Text] [Related]
10. Differential network analysis reveals the genome-wide landscape of estrogen receptor modulation in hormonal cancers. Hsiao TH; Chiu YC; Hsu PY; Lu TP; Lai LC; Tsai MH; Huang TH; Chuang EY; Chen Y Sci Rep; 2016 Mar; 6():23035. PubMed ID: 26972162 [TBL] [Abstract][Full Text] [Related]
11. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data. Wang E; Zaman N; Mcgee S; Milanese JS; Masoudi-Nejad A; O'Connor-McCourt M Semin Cancer Biol; 2015 Feb; 30():4-12. PubMed ID: 24747696 [TBL] [Abstract][Full Text] [Related]
12. A network-pathway based module identification for predicting the prognosis of ovarian cancer patients. Wang X; Wang SS; Zhou L; Yu L; Zhang LM J Ovarian Res; 2016 Nov; 9(1):73. PubMed ID: 27806724 [TBL] [Abstract][Full Text] [Related]
14. Construction of a gene-gene interaction network with a combined score across multiple approaches. Zhang AM; Song H; Shen YH; Liu Y Genet Mol Res; 2015 Jun; 14(2):7018-30. PubMed ID: 26125911 [TBL] [Abstract][Full Text] [Related]
15. Pathway Relevance Ranking for Tumor Samples through Network-Based Data Integration. Verbeke LP; Van den Eynden J; Fierro AC; Demeester P; Fostier J; Marchal K PLoS One; 2015; 10(7):e0133503. PubMed ID: 26217958 [TBL] [Abstract][Full Text] [Related]
16. A novel framework for inferring condition-specific TF and miRNA co-regulation of protein-protein interactions. Zhang J; Le TD; Liu L; He J; Li J Gene; 2016 Feb; 577(1):55-64. PubMed ID: 26611531 [TBL] [Abstract][Full Text] [Related]
17. Using knowledge-driven genomic interactions for multi-omics data analysis: metadimensional models for predicting clinical outcomes in ovarian carcinoma. Kim D; Li R; Lucas A; Verma SS; Dudek SM; Ritchie MD J Am Med Inform Assoc; 2017 May; 24(3):577-587. PubMed ID: 28040685 [TBL] [Abstract][Full Text] [Related]
18. Integrative prediction of gene function and platinum-free survival from genomic and epigenetic features in ovarian cancer. Wrzeszczynski KO; Varadan V; Kamalakaran S; Levine DA; Dimitrova N; Lucito R Methods Mol Biol; 2013; 1049():35-51. PubMed ID: 23913207 [TBL] [Abstract][Full Text] [Related]
19. Understanding genomic alterations in cancer genomes using an integrative network approach. Wang E Cancer Lett; 2013 Nov; 340(2):261-9. PubMed ID: 23266571 [TBL] [Abstract][Full Text] [Related]
20. Survey and comparative assessments of computational multi-omics integrative methods with multiple regulatory networks identifying distinct tumor compositions across pan-cancer data sets. Wei Z; Zhang Y; Weng W; Chen J; Cai H Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32533167 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]