These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 26138977)

  • 1. GREEN CHEMISTRY. Shape-selective zeolite catalysis for bioplastics production.
    Dusselier M; Van Wouwe P; Dewaele A; Jacobs PA; Sels BF
    Science; 2015 Jul; 349(6243):78-80. PubMed ID: 26138977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective catalysis for cellulose conversion to lactic acid and other α-hydroxy acids.
    Dusselier M; Sels BF
    Top Curr Chem; 2014; 353():85-125. PubMed ID: 24824728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lactide Synthesis and Chirality Control for Polylactic acid Production.
    Van Wouwe P; Dusselier M; Vanleeuw E; Sels B
    ChemSusChem; 2016 May; 9(9):907-21. PubMed ID: 27071863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic pyrolysis of petroleum-based and biodegradable plastic waste to obtain high-value chemicals.
    Saeaung K; Phusunti N; Phetwarotai W; Assabumrungrat S; Cheirsilp B
    Waste Manag; 2021 May; 127():101-111. PubMed ID: 33932851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly active and recyclable Sn-MWW zeolite catalyst for sugar conversion to methyl lactate and lactic acid.
    Guo Q; Fan F; Pidko EA; van der Graaff WN; Feng Z; Li C; Hensen EJ
    ChemSusChem; 2013 Aug; 6(8):1352-6. PubMed ID: 23776010
    [No Abstract]   [Full Text] [Related]  

  • 6. Zeolite-catalyzed isomerization of triose sugars.
    Taarning E; Saravanamurugan S; Holm MS; Xiong J; West RM; Christensen CH
    ChemSusChem; 2009 Jul; 2(7):625-7. PubMed ID: 19562790
    [No Abstract]   [Full Text] [Related]  

  • 7. [Progress on biodegradation of polylactic acid--a review].
    Li F; Wang S; Liu W; Chen G
    Wei Sheng Wu Xue Bao; 2008 Feb; 48(2):262-8. PubMed ID: 18438013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An activated equivalent of lactide toward organocatalytic ring-opening polymerization.
    Thillaye du Boullay O; Marchal E; Martin-Vaca B; Cossío FP; Bourissou D
    J Am Chem Soc; 2006 Dec; 128(51):16442-3. PubMed ID: 17177360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly selective Lewis acid sites in desilicated MFI zeolites for dihydroxyacetone isomerization to lactic acid.
    Dapsens PY; Mondelli C; Pérez-Ramírez J
    ChemSusChem; 2013 May; 6(5):831-9. PubMed ID: 23554234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustainable production of acrylic acid: alkali-ion exchanged beta zeolite for gas-phase dehydration of lactic acid.
    Yan B; Tao LZ; Liang Y; Xu BQ
    ChemSusChem; 2014 Jun; 7(6):1568-78. PubMed ID: 24903259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zeolites as sustainable catalysts for the selective synthesis of renewable bisphenols from lignin-derived monomers.
    Ferrini P; Koelewijn SF; Van Aelst J; Nuttens N; Sels BF
    ChemSusChem; 2017 May; 10(10):2249-2257. PubMed ID: 28375553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst.
    Dong W; Shen Z; Peng B; Gu M; Zhou X; Xiang B; Zhang Y
    Sci Rep; 2016 May; 6():26713. PubMed ID: 27222322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Preparation of peroral sustained release drug forms on a base of biodegradable polymers. 1. Preparation and characterization of polylactic acid].
    Mank R; Kala H; Richter M
    Pharmazie; 1989 Apr; 44(4):276-9. PubMed ID: 2772002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass.
    Ennaert T; Van Aelst J; Dijkmans J; De Clercq R; Schutyser W; Dusselier M; Verboekend D; Sels BF
    Chem Soc Rev; 2016 Feb; 45(3):584-611. PubMed ID: 26691750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new strategy for recycling and preparation of poly(L-lactic acid): hydrolysis in the melt.
    Tsuji H; Daimon H; Fujie K
    Biomacromolecules; 2003; 4(3):835-40. PubMed ID: 12741806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing the molecular modelling of diffusion in zeolites as a high throughput catalyst screening technique.
    Deka RCh; Vetrivel R
    Comb Chem High Throughput Screen; 2003 Feb; 6(1):1-9. PubMed ID: 12570748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors.
    Inkinen S; Hakkarainen M; Albertsson AC; Södergård A
    Biomacromolecules; 2011 Mar; 12(3):523-32. PubMed ID: 21332178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deactivation and regeneration of ZSM-5 zeolite in catalytic pyrolysis of plastic wastes.
    López A; de Marco I; Caballero BM; Adrados A; Laresgoiti MF
    Waste Manag; 2011 Aug; 31(8):1852-8. PubMed ID: 21530221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent trends in lactic acid-producing microorganisms through microbial fermentation for the synthesis of polylactic acid.
    Balasubramanian VK; Muthuramalingam JB; Chen YP; Chou JY
    Arch Microbiol; 2023 Dec; 206(1):31. PubMed ID: 38127148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From Nanofibrillar to Nanolaminar Poly(butylene succinate): Paving the Way to Robust Barrier and Mechanical Properties for Full-Biodegradable Poly(lactic acid) Films.
    Xie L; Xu H; Chen JB; Zhang ZJ; Hsiao BS; Zhong GJ; Chen J; Li ZM
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8023-32. PubMed ID: 25826123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.