BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 26139221)

  • 1. Positional differences in reactive hyperemia provide insight into initial phase of exercise hyperemia.
    Jasperse JL; Shoemaker JK; Gray EJ; Clifford PS
    J Appl Physiol (1985); 2015 Sep; 119(5):569-75. PubMed ID: 26139221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vasodilation and muscle pump contribution to immediate exercise hyperemia.
    Tschakovsky ME; Shoemaker JK; Hughson RL
    Am J Physiol; 1996 Oct; 271(4 Pt 2):H1697-701. PubMed ID: 8897965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of arterial feed vessels to skeletal muscle functional hyperemia.
    Lash JM
    J Appl Physiol (1985); 1994 Apr; 76(4):1512-9. PubMed ID: 8045827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for a rapid vasodilatory contribution to immediate hyperemia in rest-to-mild and mild-to-moderate forearm exercise transitions in humans.
    Saunders NR; Tschakovsky ME
    J Appl Physiol (1985); 2004 Sep; 97(3):1143-51. PubMed ID: 15155716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immediate exercise hyperemia in humans is contraction intensity dependent: evidence for rapid vasodilation.
    Tschakovsky ME; Rogers AM; Pyke KE; Saunders NR; Glenn N; Lee SJ; Weissgerber T; Dwyer EM
    J Appl Physiol (1985); 2004 Feb; 96(2):639-44. PubMed ID: 14578368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics and effectiveness of vasodilatory and pressor compensation for reduced relaxation time during rhythmic forearm contractions.
    Bentley RF; Poitras VJ; Hong T; Tschakovsky ME
    Exp Physiol; 2017 Jun; 102(6):621-634. PubMed ID: 28397384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vasodilation contributes to the rapid hyperemia with rhythmic contractions in humans.
    Shoemaker JK; Tschakovsky ME; Hughson RL
    Can J Physiol Pharmacol; 1998 Apr; 76(4):418-27. PubMed ID: 9795751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occlusion cuff position is an important determinant of the time course and magnitude of human brachial artery flow-mediated dilation.
    Berry KL; Skyrme-Jones RA; Meredith IT
    Clin Sci (Lond); 2000 Oct; 99(4):261-7. PubMed ID: 10995590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Greater post-contraction hyperaemia below vs. above heart level: the role of active vasodilatation vs. passive mechanical distension of arterioles.
    Lynn MJT; Mew OK; Drouin PJ; Liberman NL; Tschakovsky ME
    J Physiol; 2020 Jan; 598(1):85-99. PubMed ID: 31654419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing rapid-onset vasodilation to single muscle contractions in the human leg.
    Credeur DP; Holwerda SW; Restaino RM; King PM; Crutcher KL; Laughlin MH; Padilla J; Fadel PJ
    J Appl Physiol (1985); 2015 Feb; 118(4):455-64. PubMed ID: 25539935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opposing effects of shear-mediated dilation and myogenic constriction on artery diameter in response to handgrip exercise in humans.
    Atkinson CL; Carter HH; Naylor LH; Dawson EA; Marusic P; Hering D; Schlaich MP; Thijssen DH; Green DJ
    J Appl Physiol (1985); 2015 Oct; 119(8):858-64. PubMed ID: 26294751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time course of brachial artery diameter responses to rhythmic handgrip exercise in humans.
    Shoemaker JK; MacDonald MJ; Hughson RL
    Cardiovasc Res; 1997 Jul; 35(1):125-31. PubMed ID: 9302356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid vasodilation within contracted skeletal muscle in humans: new insight from concurrent use of diffuse correlation spectroscopy and Doppler ultrasound.
    Ichinose M; Nakabayashi M; Ono Y
    Am J Physiol Heart Circ Physiol; 2021 Feb; 320(2):H654-H667. PubMed ID: 33337963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic endurance exercise training offsets the age-related attenuation in contraction-induced rapid vasodilation.
    Hughes WE; Ueda K; Casey DP
    J Appl Physiol (1985); 2016 Jun; 120(11):1335-42. PubMed ID: 27032899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bimodal distribution of vasodilator responsiveness to adenosine due to difference in nitric oxide contribution: implications for exercise hyperemia.
    Martin EA; Nicholson WT; Eisenach JH; Charkoudian N; Joyner MJ
    J Appl Physiol (1985); 2006 Aug; 101(2):492-9. PubMed ID: 16614358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow-mediated dilation and exercise-induced hyperaemia in highly trained athletes: comparison of the upper and lower limb vasculature.
    Walther G; Nottin S; Karpoff L; Pérez-Martin A; Dauzat M; Obert P
    Acta Physiol (Oxf); 2008 Jun; 193(2):139-50. PubMed ID: 18294338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vasodilatation is obligatory for contraction-induced hyperaemia in canine skeletal muscle.
    Hamann JJ; Buckwalter JB; Clifford PS
    J Physiol; 2004 Jun; 557(Pt 3):1013-20. PubMed ID: 15073277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brachial artery adaptation to lower limb exercise training: role of shear stress.
    Birk GK; Dawson EA; Atkinson C; Haynes A; Cable NT; Thijssen DH; Green DJ
    J Appl Physiol (1985); 2012 May; 112(10):1653-8. PubMed ID: 22403347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Onset exercise hyperaemia in humans: partitioning the contributors.
    Wray DW; Donato AJ; Uberoi A; Merlone JP; Richardson RS
    J Physiol; 2005 Jun; 565(Pt 3):1053-60. PubMed ID: 15860535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High sodium intake differentially impacts brachial artery dilation when evaluated with reactive versus active hyperemia in salt resistant individuals.
    Decker KP; Chiu A; Weggen JB; Richardson JW; Hogwood AC; Darling AM; Garten RS
    J Appl Physiol (1985); 2023 Feb; 134(2):277-287. PubMed ID: 36548512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.