These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 26139336)

  • 1. Biofilm formation and extracellular polymeric substances (EPS) production by Bacillus subtilis depending on nutritional conditions in the presence of polyester film.
    Voběrková S; Hermanová S; Hrubanová K; Krzyžánek V
    Folia Microbiol (Praha); 2016 Mar; 61(2):91-100. PubMed ID: 26139336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exopolymer diversity and the role of levan in Bacillus subtilis biofilms.
    Dogsa I; Brloznik M; Stopar D; Mandic-Mulec I
    PLoS One; 2013; 8(4):e62044. PubMed ID: 23637960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific Bacillus subtilis 168 variants form biofilms on nutrient-rich medium.
    Gallegos-Monterrosa R; Mhatre E; Kovács ÁT
    Microbiology (Reading); 2016 Nov; 162(11):1922-1932. PubMed ID: 27655338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofilm-defective mutants of Bacillus subtilis.
    Chagneau C; Saier MH
    J Mol Microbiol Biotechnol; 2004; 8(3):177-88. PubMed ID: 16088219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of extracellular polymeric substances (EPS) properties of P. aeruginosa and B. subtilis and their role in bacterial adhesion.
    Harimawan A; Ting YP
    Colloids Surf B Biointerfaces; 2016 Oct; 146():459-67. PubMed ID: 27395039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SinR is a mutational target for fine-tuning biofilm formation in laboratory-evolved strains of Bacillus subtilis.
    Leiman SA; Arboleda LC; Spina JS; McLoon AL
    BMC Microbiol; 2014 Nov; 14():301. PubMed ID: 25433524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphologies and phenotypes in Bacillus subtilis biofilms.
    Wang X; Meng S; Han J
    J Microbiol; 2017 Aug; 55(8):619-627. PubMed ID: 28674970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface indentation and fluid intake generated by the polymer matrix of Bacillus subtilis biofilms.
    Zhang W; Dai W; Tsai SM; Zehnder SM; Sarntinoranont M; Angelini TE
    Soft Matter; 2015 May; 11(18):3612-7. PubMed ID: 25797701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of ypqP as a New Bacillus subtilis biofilm determinant that mediates the protection of Staphylococcus aureus against antimicrobial agents in mixed-species communities.
    Sanchez-Vizuete P; Le Coq D; Bridier A; Herry JM; Aymerich S; Briandet R
    Appl Environ Microbiol; 2015 Jan; 81(1):109-18. PubMed ID: 25326298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofilm formation and exopolysaccharide (EPS) production by Cronobacter sakazakii depending on environmental conditions.
    Jung JH; Choi NY; Lee SY
    Food Microbiol; 2013 May; 34(1):70-80. PubMed ID: 23498180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of the Bacillus subtilis biofilm expansion rate on phenotypes and the morphology under different growing conditions.
    Wang X; Kong Y; Zhao H; Yan X
    Dev Growth Differ; 2019 Sep; 61(7-8):431-443. PubMed ID: 31565797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Bacterial Tyrosine Kinase Activator TkmA Contributes to Biofilm Formation Largely Independently of the Cognate Kinase PtkA in Bacillus subtilis.
    Gao T; Greenwich J; Li Y; Wang Q; Chai Y
    J Bacteriol; 2015 Nov; 197(21):3421-32. PubMed ID: 26283769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exopolymeric substances (EPS) from Bacillus subtilis: polymers and genes encoding their synthesis.
    Marvasi M; Visscher PT; Casillas Martinez L
    FEMS Microbiol Lett; 2010 Dec; 313(1):1-9. PubMed ID: 20735481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Growth conditions and production of the Bacillus intermedius subtilisin-like serine proteinase by the recombinant Bacillus subtilis strain].
    Kirillova IuM; Mikhaĭlova EO; Balaban NP; Mardanova AM; Rudenskaia GN; Kostrov SV; Sharipova MR
    Mikrobiologiia; 2006; 75(2):172-8. PubMed ID: 16758864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Dispersal of Surface Layer Biofilm Induced by Nanosized TiO
    Zhang P; Guo JS; Yan P; Chen YP; Wang W; Dai YZ; Fang F; Wang GX; Shen Y
    Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29500260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis.
    Hamon MA; Stanley NR; Britton RA; Grossman AD; Lazazzera BA
    Mol Microbiol; 2004 May; 52(3):847-60. PubMed ID: 15101989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular proteolytic activity plays a central role in swarming motility in Bacillus subtilis.
    Connelly MB; Young GM; Sloma A
    J Bacteriol; 2004 Jul; 186(13):4159-67. PubMed ID: 15205417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of biofilm formation by Bacillus subtilis natto on menaquinone-7 biosynthesis.
    Berenjian A; Chan NL; Mahanama R; Talbot A; Regtop H; Kavanagh J; Dehghani F
    Mol Biotechnol; 2013 Jun; 54(2):371-8. PubMed ID: 22740166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of biofilm formation by D-tyrosine: Effect of bacterial type and D-tyrosine concentration.
    Yu C; Li X; Zhang N; Wen D; Liu C; Li Q
    Water Res; 2016 Apr; 92():173-9. PubMed ID: 26854605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofilms and extracellular polymeric substances mediate the transport of graphene oxide nanoparticles in saturated porous media.
    Jian-Zhou H; Cheng-Cheng L; Deng-Jun W; Zhou DM
    J Hazard Mater; 2015 Dec; 300():467-474. PubMed ID: 26223021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.