These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26139347)

  • 1. Switching plasmon coupling through the formation of dimers from polyaniline-coated gold nanospheres.
    Jiang N; Ruan Q; Qin F; Wang J; Lin HQ
    Nanoscale; 2015 Aug; 7(29):12516-26. PubMed ID: 26139347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-State Switching of the Mie Resonance of Conductive Polyaniline Nanospheres.
    Lu Y; Lam SH; Lu W; Shao L; Chow TH; Wang J
    Nano Lett; 2022 Feb; 22(3):1406-1414. PubMed ID: 35084205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of shape in substrate-induced plasmonic shift and mode uncovering on gold nanocrystals.
    Qin F; Cui X; Ruan Q; Lai Y; Wang J; Ma H; Lin HQ
    Nanoscale; 2016 Oct; 8(40):17645-17657. PubMed ID: 27714128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angle- and energy-resolved plasmon coupling in gold nanorod dimers.
    Shao L; Woo KC; Chen H; Jin Z; Wang J; Lin HQ
    ACS Nano; 2010 Jun; 4(6):3053-62. PubMed ID: 20565141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode.
    Tsai CY; Lin JW; Wu CY; Lin PT; Lu TW; Lee PT
    Nano Lett; 2012 Mar; 12(3):1648-54. PubMed ID: 22321005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled plasmon resonance properties of hollow gold nanosphere aggregates.
    Chandra M; Dowgiallo AM; Knappenberger KL
    J Am Chem Soc; 2010 Nov; 132(44):15782-9. PubMed ID: 20961113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. (Gold nanorod core)/(polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths.
    Jiang N; Shao L; Wang J
    Adv Mater; 2014 May; 26(20):3282-9. PubMed ID: 24591117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fano Transparency in Rounded Nanocube Dimers Induced by Gap Plasmon Coupling.
    Pellarin M; Ramade J; Rye JM; Bonnet C; Broyer M; Lebeault MA; Lermé J; Marguet S; Navarro JR; Cottancin E
    ACS Nano; 2016 Dec; 10(12):11266-11279. PubMed ID: 28024347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Universal scaling and Fano resonance in the plasmon coupling between gold nanorods.
    Woo KC; Shao L; Chen H; Liang Y; Wang J; Lin HQ
    ACS Nano; 2011 Jul; 5(7):5976-86. PubMed ID: 21702485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-directed gold nanodimers with tunable sizes and interparticle distances and their surface plasmonic properties.
    Lan X; Chen Z; Liu BJ; Ren B; Henzie J; Wang Q
    Small; 2013 Jul; 9(13):2308-15. PubMed ID: 23401271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New coupling mechanism of titanium nitride nanosphere dimers at short separation distances.
    Cao P; Chen H; Liang M; Dou J; Cheng L
    Nanotechnology; 2019 Aug; 30(33):335204. PubMed ID: 31035275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximizing the Surface Sensitivity of LSPR Biosensors through Plasmon Coupling-Interparticle Gap Optimization for Dimers Using Computational Simulations.
    Bonyár A
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres.
    Shao L; Fang C; Chen H; Man YC; Wang J; Lin HQ
    Nano Lett; 2012 Mar; 12(3):1424-30. PubMed ID: 22268670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing quantum plasmon coupling using gold nanoparticle dimers with tunable interparticle distances down to the subnanometer range.
    Cha H; Yoon JH; Yoon S
    ACS Nano; 2014 Aug; 8(8):8554-63. PubMed ID: 25089844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic coupling with most of the transition metals: a new family of broad band and near infrared nanoantennas.
    Manchon D; Lermé J; Zhang T; Mosset A; Jamois C; Bonnet C; Rye JM; Belarouci A; Broyer M; Pellarin M; Cottancin E
    Nanoscale; 2015 Jan; 7(3):1181-92. PubMed ID: 25488835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of core dielectric properties on the localized surface plasmonic spectra of gold-coated magnetic core-shell nanoparticles.
    Chaffin EA; Bhana S; O'Connor RT; Huang X; Wang Y
    J Phys Chem B; 2014 Dec; 118(49):14076-84. PubMed ID: 25010347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-Substrate-Mediated Plasmon Hybridization in a Nanoparticle Dimer for Photoluminescence Line-Width Shrinking and Intensity Enhancement.
    Li GC; Zhang YL; Jiang J; Luo Y; Lei DY
    ACS Nano; 2017 Mar; 11(3):3067-3080. PubMed ID: 28291332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macroscopic Au@PANI Core/Shell Nanoparticle Superlattice Monolayer Film with Dual-Responsive Plasmonic Switches.
    Lin H; Song L; Huang Y; Cheng Q; Yang Y; Guo Z; Su F; Chen T
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):11296-11304. PubMed ID: 32043861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Switching plasmonic Fano resonance in gold nanosphere-nanoplate heterodimers.
    Lu W; Cui X; Chow TH; Shao L; Wang H; Chen H; Wang J
    Nanoscale; 2019 May; 11(19):9641-9653. PubMed ID: 31065663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetrakis(4-sulfonatophenyl)porphyrin-directed assembly of gold nanocrystals: tailoring the plasmon coupling through controllable gap distances.
    Zhang L; Chen H; Wang J; Li YF; Wang J; Sang Y; Xiao SJ; Zhan L; Huang CZ
    Small; 2010 Sep; 6(18):2001-9. PubMed ID: 20715071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.