These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 26139409)

  • 1. Characterization of the precursors of trihalomethanes and haloacetic acids in the Yuqiao Reservoir in China.
    Niu ZG; Wei XT; Zhang Y
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):17508-17. PubMed ID: 26139409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water.
    Liang L; Singer PC
    Environ Sci Technol; 2003 Jul; 37(13):2920-8. PubMed ID: 12875395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of dissolved organic matter from surface waters with low to high dissolved organic carbon and the related disinfection byproduct formation potential.
    Li A; Zhao X; Mao R; Liu H; Qu J
    J Hazard Mater; 2014 Apr; 271():228-35. PubMed ID: 24632486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bench-scale testing of a magnetic ion exchange resin for removal of disinfection by-product precursors.
    Boyer TH; Singer PC
    Water Res; 2005 Apr; 39(7):1265-76. PubMed ID: 15862326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disinfection byproduct formation in drinking water sources: A case study of Yuqiao reservoir.
    Zhai H; He X; Zhang Y; Du T; Adeleye AS; Li Y
    Chemosphere; 2017 Aug; 181():224-231. PubMed ID: 28445816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seasonal variations of chemical and physical characteristics of dissolved organic matter and trihalomethane precursors in a reservoir: a case study.
    Wei QS; Feng CH; Wang DS; Shi BY; Zhang LT; Wei Q; Tang HX
    J Hazard Mater; 2008 Jan; 150(2):257-64. PubMed ID: 17560713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Relationship between dissolved organic carbon and DBP in the Pearl River water].
    He HW; Zhou DC; Wang BQ; Liang YH
    Huan Jing Ke Xue; 2012 Sep; 33(9):3076-82. PubMed ID: 23243862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insight into changes during coagulation in NOM reactivity for trihalomethanes and haloacetic acids formation.
    Tubić A; Agbaba J; Dalmacija B; Molnar J; Maletić S; Watson M; Perović SU
    J Environ Manage; 2013 Mar; 118():153-60. PubMed ID: 23428464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size.
    Hua G; Reckhow DA
    Environ Sci Technol; 2007 May; 41(9):3309-15. PubMed ID: 17539542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbonaceous and nitrogenous disinfection by-product formation from algal organic matter.
    Goslan EH; Seigle C; Purcell D; Henderson R; Parsons SA; Jefferson B; Judd SJ
    Chemosphere; 2017 Mar; 170():1-9. PubMed ID: 27951445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size and resin fractionations of dissolved organic matter and trihalomethane precursors from four typical source waters in China.
    Wei Q; Wang D; Wei Q; Qiao C; Shi B; Tang H
    Environ Monit Assess; 2008 Jun; 141(1-3):347-57. PubMed ID: 17849227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of natural organic matter in conventional water treatment processes for selection of treatment processes focused on DBPs control.
    Kim HC; Yu MJ
    Water Res; 2005 Nov; 39(19):4779-89. PubMed ID: 16253305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. THM and HAA formation from NOM in raw and treated surface waters.
    Golea DM; Upton A; Jarvis P; Moore G; Sutherland S; Parsons SA; Judd SJ
    Water Res; 2017 Apr; 112():226-235. PubMed ID: 28167408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the relationship between bulk organic precursors and disinfection byproduct formation for advanced oxidation processes.
    Mayer BK; Daugherty E; Abbaszadegan M
    Chemosphere; 2015 Feb; 121():39-46. PubMed ID: 25433979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of trihalomethane precursor removal from sub-tropical reservoir waters by a magnetic ion exchange resin using a combined method of chloride concentration variation and surrogate organic molecules.
    Phetrak A; Lohwacharin J; Takizawa S
    Sci Total Environ; 2016 Jan; 539():165-174. PubMed ID: 26360458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of bioflocculants on the coagulation activity of alum for removal of trihalomethane precursors from low turbid water.
    Priya T; Tarafdar A; Gupta B; Mishra BK
    J Environ Sci (China); 2018 Aug; 70():1-10. PubMed ID: 30037396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of disinfection by-products formation during chlorination and chloramination of dissolved natural organic matter fractions isolated from a filtered river water.
    Lu J; Zhang T; Ma J; Chen Z
    J Hazard Mater; 2009 Feb; 162(1):140-5. PubMed ID: 18585856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonal variations of disinfection by-product precursors profile and their removal through surface water treatment plants.
    Uyak V; Ozdemir K; Toroz I
    Sci Total Environ; 2008 Feb; 390(2-3):417-24. PubMed ID: 17997473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of molecular weight distribution of dissolved organic matter in bromide-containing water and disinfection by-product formation properties during treatment processes.
    Zhang Y; Zhang N; Zhao P; Niu Z
    J Environ Sci (China); 2018 Mar; 65():179-189. PubMed ID: 29548389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variability of disinfection by-products at a full-scale treatment plant following rainfall events.
    Delpla I; Rodriguez MJ
    Chemosphere; 2017 Jan; 166():453-462. PubMed ID: 27710882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.