BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

524 related articles for article (PubMed ID: 26139610)

  • 1. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration.
    Zhao L; Zabel MK; Wang X; Ma W; Shah P; Fariss RN; Qian H; Parkhurst CN; Gan WB; Wong WT
    EMBO Mol Med; 2015 Sep; 7(9):1179-97. PubMed ID: 26139610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microglial phagocytosis and activation underlying photoreceptor degeneration is regulated by CX3CL1-CX3CR1 signaling in a mouse model of retinitis pigmentosa.
    Zabel MK; Zhao L; Zhang Y; Gonzalez SR; Ma W; Wang X; Fariss RN; Wong WT
    Glia; 2016 Sep; 64(9):1479-91. PubMed ID: 27314452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microglia Inhibition Delays Retinal Degeneration Due to MerTK Phagocytosis Receptor Deficiency.
    Lew DS; Mazzoni F; Finnemann SC
    Front Immunol; 2020; 11():1463. PubMed ID: 32765507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Müller glia phagocytose dead photoreceptor cells in a mouse model of retinal degenerative disease.
    Sakami S; Imanishi Y; Palczewski K
    FASEB J; 2019 Mar; 33(3):3680-3692. PubMed ID: 30462532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the sigma-1 receptor chaperone in rod and cone photoreceptor degenerations in a mouse model of retinitis pigmentosa.
    Yang H; Fu Y; Liu X; Shahi PK; Mavlyutov TA; Li J; Yao A; Guo SZ; Pattnaik BR; Guo LW
    Mol Neurodegener; 2017 Sep; 12(1):68. PubMed ID: 28927431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidants slow photoreceptor cell death in mouse models of retinitis pigmentosa.
    Komeima K; Rogers BS; Campochiaro PA
    J Cell Physiol; 2007 Dec; 213(3):809-15. PubMed ID: 17520694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration.
    Gupta N; Brown KE; Milam AH
    Exp Eye Res; 2003 Apr; 76(4):463-71. PubMed ID: 12634111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C3- and CR3-dependent microglial clearance protects photoreceptors in retinitis pigmentosa.
    Silverman SM; Ma W; Wang X; Zhao L; Wong WT
    J Exp Med; 2019 Aug; 216(8):1925-1943. PubMed ID: 31209071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal pattern of rod degeneration in the S334ter-line-3 rat model of retinitis pigmentosa.
    Zhu CL; Ji Y; Lee EJ; Grzywacz NM
    Cell Tissue Res; 2013 Jan; 351(1):29-40. PubMed ID: 23143675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of Epigenetic Modifiers LSD1 and HDAC1 Blocks Rod Photoreceptor Death in Mouse Models of Retinitis Pigmentosa.
    Popova EY; Imamura Kawasawa Y; Zhang SS; Barnstable CJ
    J Neurosci; 2021 Aug; 41(31):6775-6792. PubMed ID: 34193554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term preservation of cone photoreceptors and visual acuity in rd10 mutant mice exposed to continuous environmental enrichment.
    Barone I; Novelli E; Strettoi E
    Mol Vis; 2014; 20():1545-56. PubMed ID: 25489227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of microglial activation is neuroprotective in a mouse model of human retinitis pigmentosa.
    Peng B; Xiao J; Wang K; So KF; Tipoe GL; Lin B
    J Neurosci; 2014 Jun; 34(24):8139-50. PubMed ID: 24920619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metipranolol promotes structure and function of retinal photoreceptors in the rd10 mouse model of human retinitis pigmentosa.
    Kanan Y; Khan M; Lorenc VE; Long D; Chadha R; Sciamanna J; Green K; Campochiaro PA
    J Neurochem; 2019 Jan; 148(2):307-318. PubMed ID: 30315650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conditional rod photoreceptor ablation reveals Sall1 as a microglial marker and regulator of microglial morphology in the retina.
    Koso H; Tsuhako A; Lai CY; Baba Y; Otsu M; Ueno K; Nagasaki M; Suzuki Y; Watanabe S
    Glia; 2016 Nov; 64(11):2005-24. PubMed ID: 27459098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microglial NADPH oxidase activation mediates rod cell death in the retinal degeneration in rd mice.
    Zeng H; Ding M; Chen XX; Lu Q
    Neuroscience; 2014 Sep; 275():54-61. PubMed ID: 24929065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soluble CX3CL1 gene therapy improves cone survival and function in mouse models of retinitis pigmentosa.
    Wang SK; Xue Y; Rana P; Hong CM; Cepko CL
    Proc Natl Acad Sci U S A; 2019 May; 116(20):10140-10149. PubMed ID: 31036641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cav1.4 L-Type Calcium Channels Contribute to Calpain Activation in Degenerating Photoreceptors of rd1 Mice.
    Schön C; Paquet-Durand F; Michalakis S
    PLoS One; 2016; 11(6):e0156974. PubMed ID: 27270916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progesterone Attenuates Microglial-Driven Retinal Degeneration and Stimulates Protective Fractalkine-CX3CR1 Signaling.
    Roche SL; Wyse-Jackson AC; Gómez-Vicente V; Lax P; Ruiz-Lopez AM; Byrne AM; Cuenca N; Cotter TG
    PLoS One; 2016; 11(11):e0165197. PubMed ID: 27814376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A diffusible factor from normal retinal cells promotes rod photoreceptor survival in an in vitro model of retinitis pigmentosa.
    Streichert LC; Birnbach CD; Reh TA
    J Neurobiol; 1999 Jun; 39(4):475-90. PubMed ID: 10380070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice.
    Mitton KP; Guzman AE; Deshpande M; Byrd D; DeLooff C; Mkoyan K; Zlojutro P; Wallace A; Metcalf B; Laux K; Sotzen J; Tran T
    Mol Vis; 2014; 20():1527-44. PubMed ID: 25489226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.