BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26140295)

  • 1. Quantitation of Dihydroxyacetone in Australian Leptospermum Nectar via High-Performance Liquid Chromatography.
    Norton AM; McKenzie LN; Brooks PR; Pappalardo LJ
    J Agric Food Chem; 2015 Jul; 63(29):6513-7. PubMed ID: 26140295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dihydroxyacetone Production in the Nectar of Australian Leptospermum Is Species Dependent.
    Williams SD; Pappalardo L; Bishop J; Brooks PR
    J Agric Food Chem; 2018 Oct; 66(42):11133-11140. PubMed ID: 30289260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional, annual, and individual variations in the dihydroxyacetone content of the nectar of ma̅nuka (Leptospermum scoparium) in New Zealand.
    Williams S; King J; Revell M; Manley-Harris M; Balks M; Janusch F; Kiefer M; Clearwater M; Brooks P; Dawson M
    J Agric Food Chem; 2014 Oct; 62(42):10332-40. PubMed ID: 25277074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sugar and dihydroxyacetone ratios in floral nectar suggest continuous exudation and reabsorption in Leptospermum polygalifolium Salisb.
    Obeng-Darko SA; Brooks PR; Veneklaas EJ; Finnegan PM
    Plant Sci; 2022 Oct; 323():111378. PubMed ID: 35842059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Antibacterial Activity of Australian Leptospermum Honey Correlates with Methylglyoxal Levels.
    Cokcetin NN; Pappalardo M; Campbell LT; Brooks P; Carter DA; Blair SE; Harry EJ
    PLoS One; 2016; 11(12):e0167780. PubMed ID: 28030589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dihydroxyacetone in the Floral Nectar of
    Obeng-Darko SA; Sloan J; Binks RM; Brooks PR; Veneklaas EJ; Finnegan PM
    J Agric Food Chem; 2023 May; 71(20):7703-7709. PubMed ID: 37191313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of high pressure processing on the conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka (Leptospermum scoparium) honey and models thereof.
    Grainger MN; Manley-Harris M; Fauzi NA; Farid MM
    Food Chem; 2014 Jun; 153():134-9. PubMed ID: 24491711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the formation of methylglyoxal from dihydroxyacetone in Manuka (Leptospermum scoparium) honey.
    Atrott J; Haberlau S; Henle T
    Carbohydr Res; 2012 Nov; 361():7-11. PubMed ID: 22960208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey.
    Adams CJ; Manley-Harris M; Molan PC
    Carbohydr Res; 2009 May; 344(8):1050-3. PubMed ID: 19368902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation, Structural Elucidation, and Synthesis of Lepteridine From Ma̅nuka (Leptospermum scoparium) Honey.
    Daniels BJ; Prijic G; Meidinger S; Loomes KM; Stephens JM; Schlothauer RC; Furkert DP; Brimble MA
    J Agric Food Chem; 2016 Jun; 64(24):5079-84. PubMed ID: 27210444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid and Reliable HPLC Method for the Simultaneous Determination of Dihydroxyacetone, Methylglyoxal and 5-Hydroxymethylfurfural in Leptospermum Honeys.
    Pappalardo M; Pappalardo L; Brooks P
    PLoS One; 2016; 11(11):e0167006. PubMed ID: 27861622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of genotype, floral stage, and water stress on floral nectar yield and composition of mānuka (Leptospermum scoparium).
    Clearwater MJ; Revell M; Noe S; Manley-Harris M
    Ann Bot; 2018 Mar; 121(3):501-512. PubMed ID: 29300875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nectary photosynthesis contributes to the production of mānuka (Leptospermum scoparium) floral nectar.
    Clearwater MJ; Noe ST; Manley-Harris M; Truman GL; Gardyne S; Murray J; Obeng-Darko SA; Richardson SJ
    New Phytol; 2021 Nov; 232(4):1703-1717. PubMed ID: 34287899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A phosphatase gene is linked to nectar dihydroxyacetone accumulation in mānuka (Leptospermum scoparium).
    Grierson ERP; Thrimawithana AH; van Klink JW; Lewis DH; Carvajal I; Shiller J; Miller P; Deroles SC; Clearwater MJ; Davies KM; Chagné D; Schwinn KE
    New Phytol; 2024 Jun; 242(5):2270-2284. PubMed ID: 38532557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of maltol glucoside from the floral nectar of New Zealand mānuka (Leptospermum scoparium).
    Adams CJ; Grainger MN; Manley-Harris M
    Food Chem; 2015 May; 174():306-9. PubMed ID: 25529685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leptosperin is a distinct and detectable fluorophore in Leptospermum honeys.
    Bong J; Prijic G; Braggins TJ; Schlothauer RC; Stephens JM; Loomes KM
    Food Chem; 2017 Jan; 214():102-109. PubMed ID: 27507454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and Quantitation of 2-Acetyl-1-pyrroline in Manuka Honey (Leptospermum scoparium).
    Rückriemen J; Schwarzenbolz U; Adam S; Henle T
    J Agric Food Chem; 2015 Sep; 63(38):8488-92. PubMed ID: 26365614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis of honey. Identification of unique peptide markers for authentication of NZ mānuka (Leptospermum scoparium) honey.
    Bong J; Middleditch M; Loomes KM; Stephens JM
    Food Chem; 2021 Jul; 350():128442. PubMed ID: 33388180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unique Pattern of Protein-Bound Maillard Reaction Products in Manuka (Leptospermum scoparium) Honey.
    Hellwig M; Rückriemen J; Sandner D; Henle T
    J Agric Food Chem; 2017 May; 65(17):3532-3540. PubMed ID: 28415841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation by HPLC and characterisation of the bioactive fraction of New Zealand manuka (Leptospermum scoparium) honey.
    Adams CJ; Boult CH; Deadman BJ; Farr JM; Grainger MN; Manley-Harris M; Snow MJ
    Carbohydr Res; 2008 Mar; 343(4):651-9. PubMed ID: 18194804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.