These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 26140438)
1. Analysis and Ranking of Protein-Protein Docking Models Using Inter-Residue Contacts and Inter-Molecular Contact Maps. Oliva R; Chermak E; Cavallo L Molecules; 2015 Jul; 20(7):12045-60. PubMed ID: 26140438 [TBL] [Abstract][Full Text] [Related]
2. Ranking multiple docking solutions based on the conservation of inter-residue contacts. Oliva R; Vangone A; Cavallo L Proteins; 2013 Sep; 81(9):1571-84. PubMed ID: 23609916 [TBL] [Abstract][Full Text] [Related]
3. The CASP13-CAPRI targets as case studies to illustrate a novel scoring pipeline integrating CONSRANK with clustering and interface analyses. Barradas-Bautista D; Cao Z; Cavallo L; Oliva R BMC Bioinformatics; 2020 Sep; 21(Suppl 8):262. PubMed ID: 32938371 [TBL] [Abstract][Full Text] [Related]
4. Introducing a Clustering Step in a Consensus Approach for the Scoring of Protein-Protein Docking Models. Chermak E; De Donato R; Lensink MF; Petta A; Serra L; Scarano V; Cavallo L; Oliva R PLoS One; 2016; 11(11):e0166460. PubMed ID: 27846259 [TBL] [Abstract][Full Text] [Related]
5. Using a consensus approach based on the conservation of inter-residue contacts to rank CAPRI models. Vangone A; Cavallo L; Oliva R Proteins; 2013 Dec; 81(12):2210-20. PubMed ID: 24115176 [TBL] [Abstract][Full Text] [Related]
6. CONS-COCOMAPS: a novel tool to measure and visualize the conservation of inter-residue contacts in multiple docking solutions. Vangone A; Oliva R; Cavallo L BMC Bioinformatics; 2012 Mar; 13 Suppl 4(Suppl 4):S19. PubMed ID: 22536965 [TBL] [Abstract][Full Text] [Related]
7. CONSRANK: a server for the analysis, comparison and ranking of docking models based on inter-residue contacts. Chermak E; Petta A; Serra L; Vangone A; Scarano V; Cavallo L; Oliva R Bioinformatics; 2015 May; 31(9):1481-3. PubMed ID: 25535242 [TBL] [Abstract][Full Text] [Related]
8. Performance of MDockPP in CAPRI rounds 28-29 and 31-35 including the prediction of water-mediated interactions. Xu X; Qiu L; Yan C; Ma Z; Grinter SZ; Zou X Proteins; 2017 Mar; 85(3):424-434. PubMed ID: 27802576 [TBL] [Abstract][Full Text] [Related]
9. HarmonyDOCK: the structural analysis of poses in protein-ligand docking. Plewczynski D; Philips A; Von Grotthuss M; Rychlewski L; Ginalski K J Comput Biol; 2014 Mar; 21(3):247-56. PubMed ID: 21091053 [TBL] [Abstract][Full Text] [Related]
10. Analysis of the interface variability in NMR structure ensembles of protein-protein complexes. Calvanese L; D'Auria G; Vangone A; Falcigno L; Oliva R J Struct Biol; 2016 Jun; 194(3):317-24. PubMed ID: 26968364 [TBL] [Abstract][Full Text] [Related]
11. Score_set: a CAPRI benchmark for scoring protein complexes. Lensink MF; Wodak SJ Proteins; 2014 Nov; 82(11):3163-9. PubMed ID: 25179222 [TBL] [Abstract][Full Text] [Related]
12. Accurate prediction of inter-protein residue-residue contacts for homo-oligomeric protein complexes. Yan Y; Huang SY Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33693482 [TBL] [Abstract][Full Text] [Related]
13. Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA. Greenidge PA; Kramer C; Mozziconacci JC; Sherman W J Chem Inf Model; 2014 Oct; 54(10):2697-717. PubMed ID: 25266271 [TBL] [Abstract][Full Text] [Related]
14. Addressing recent docking challenges: A hybrid strategy to integrate template-based and free protein-protein docking. Yan Y; Wen Z; Wang X; Huang SY Proteins; 2017 Mar; 85(3):497-512. PubMed ID: 28026062 [TBL] [Abstract][Full Text] [Related]
15. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Chen F; Liu H; Sun H; Pan P; Li Y; Li D; Hou T Phys Chem Chem Phys; 2016 Aug; 18(32):22129-39. PubMed ID: 27444142 [TBL] [Abstract][Full Text] [Related]
16. Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results. Li Y; Han L; Liu Z; Wang R J Chem Inf Model; 2014 Jun; 54(6):1717-36. PubMed ID: 24708446 [TBL] [Abstract][Full Text] [Related]
17. Generative Topographic Mapping of the Docking Conformational Space. Horvath D; Marcou G; Varnek A Molecules; 2019 Jun; 24(12):. PubMed ID: 31216756 [TBL] [Abstract][Full Text] [Related]
18. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power. Wang Z; Sun H; Yao X; Li D; Xu L; Li Y; Tian S; Hou T Phys Chem Chem Phys; 2016 May; 18(18):12964-75. PubMed ID: 27108770 [TBL] [Abstract][Full Text] [Related]
19. Expanding the frontiers of protein-protein modeling: from docking and scoring to binding affinity predictions and other challenges. Pallara C; Jiménez-García B; Pérez-Cano L; Romero-Durana M; Solernou A; Grosdidier S; Pons C; Moal IH; Fernandez-Recio J Proteins; 2013 Dec; 81(12):2192-200. PubMed ID: 23934865 [TBL] [Abstract][Full Text] [Related]
20. Target-specific native/decoy pose classifier improves the accuracy of ligand ranking in the CSAR 2013 benchmark. Fourches D; Politi R; Tropsha A J Chem Inf Model; 2015 Jan; 55(1):63-71. PubMed ID: 25521713 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]