These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 26140507)

  • 1. Shape-Controlled Growth of Carbon Nanostructures: Yield and Mechanism.
    Ma Y; Sun X; Yang N; Xia J; Zhang L; Jiang X
    Chemistry; 2015 Aug; 21(35):12370-5. PubMed ID: 26140507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-temperature synthesis of amorphous carbon nanocoils via acetylene coupling on copper nanocrystal surfaces at 468 K: a reaction mechanism analysis.
    Qin Y; Jiang X; Cui Z
    J Phys Chem B; 2005 Nov; 109(46):21749-54. PubMed ID: 16853825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth of carbon nanostructures on carbonized electrospun nanofibers with palladium nanoparticles.
    Lai C; Guo Q; Wu XF; Reneker DH; Hou H
    Nanotechnology; 2008 May; 19(19):195303. PubMed ID: 21825712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Process synthesis and optimization for the production of carbon nanostructures.
    Iyuke SE; Mamvura TA; Liu K; Sibanda V; Meyyappan M; Varadan VK
    Nanotechnology; 2009 Sep; 20(37):375602. PubMed ID: 19706958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the graphitization mechanism of SiO(2) nanoparticles in chemical vapor deposition.
    Bachmatiuk A; Börrnert F; Grobosch M; Schäffel F; Wolff U; Scott A; Zaka M; Warner JH; Klingeler R; Knupfer M; Büchner B; Rümmeli MH
    ACS Nano; 2009 Dec; 3(12):4098-104. PubMed ID: 19908851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled CVD growth of Cu-Sb alloy nanostructures.
    Chen J; Yin Z; Sim D; Tay YY; Zhang H; Ma J; Hng HH; Yan Q
    Nanotechnology; 2011 Aug; 22(32):325602. PubMed ID: 21757793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical chrysanthemum-flower-like carbon nanomaterials grown by chemical vapor deposition.
    Ding EX; Geng HZ; Wang J; Luo ZJ; Li G; Wang WY; Li LG; Yang HJ; Da SX; Wang J; Jiang H; Kauppinen EI
    Nanotechnology; 2016 Feb; 27(8):085602. PubMed ID: 26808687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal catalyst adsorption effects in the growth of carbon nanostructures on mesoporous material.
    Marchi MC; Acuña JJ; Figueroa CA
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6439-44. PubMed ID: 22962761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of catalyst nanoparticles and nucleation of carbon nanotubes in chemical vapor deposition.
    Verissimo C; Aguiar MR; Moshkalev SA
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4459-66. PubMed ID: 19916474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas-induced formation of Cu nanoparticle as catalyst for high-purity straight and helical carbon nanofibers.
    Jian X; Jiang M; Zhou Z; Zeng Q; Lu J; Wang D; Zhu J; Gou J; Wang Y; Hui D; Yang M
    ACS Nano; 2012 Oct; 6(10):8611-9. PubMed ID: 22963353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalyst-free growth of quasi-aligned nanorods of single crystal Cu3Mo2O9 and their catalytic properties.
    Chu WG; Wang HF; Guo YJ; Zhang LN; Han ZH; Li QQ; Fan SS
    Inorg Chem; 2009 Feb; 48(3):1243-9. PubMed ID: 19128151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Converting carbon nanofibers to carbon nanoneedles: catalyst splitting and reverse motion.
    Yun J; Wang R; Hong MH; Thong JT; Foo YL; Thompson CV; Choi WK
    Nanoscale; 2010 Oct; 2(10):2180-5. PubMed ID: 20697651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties.
    Linic S; Christopher P; Xin H; Marimuthu A
    Acc Chem Res; 2013 Aug; 46(8):1890-9. PubMed ID: 23750539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring the carbon nanostructures grown on the surface of Ni-Al bimetallic nanoparticles in the gas phase.
    Kim WD; Ahn JY; Lee DG; Lee HW; Hong SW; Park HS; Kim SH
    J Colloid Interface Sci; 2011 Oct; 362(2):261-6. PubMed ID: 21757200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of support and reactant on the yield and structure of carbon growth by chemical vapor deposition.
    Yu Z; Chen D; Tøtdal B; Holmen A
    J Phys Chem B; 2005 Apr; 109(13):6096-102. PubMed ID: 16851671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth of carbon nanocoils from K and Ag cooperative bicatalyst assisted thermal decomposition of acetylene.
    Liu WC; Lin HK; Chen YL; Lee CY; Chiu HT
    ACS Nano; 2010 Jul; 4(7):4149-57. PubMed ID: 20527809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A magnetism-assisted chemical vapor deposition method to produce branched or iron-encapsulated carbon nanotubes.
    Wei D; Liu Y; Cao L; Fu L; Li X; Wang Y; Yu G
    J Am Chem Soc; 2007 Jun; 129(23):7364-8. PubMed ID: 17508747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-selective catalytic growth of nearly 100% pure carbon nanocoils with copper nanoparticles produced by atomic layer deposition.
    Wang G; Ran G; Wan G; Yang P; Gao Z; Lin S; Fu C; Qin Y
    ACS Nano; 2014 May; 8(5):5330-8. PubMed ID: 24787983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics-driven growth of orthogonally branched single-crystalline magnesium oxide nanostructures.
    Hao Y; Meng G; Ye C; Zhang X; Zhang L
    J Phys Chem B; 2005 Jun; 109(22):11204-8. PubMed ID: 16852367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the gas species on the formation of carbon nanotubes during thermal chemical vapour deposition.
    Ohashi F; Chen GY; Stolojan V; Silva SR
    Nanotechnology; 2008 Nov; 19(44):445605. PubMed ID: 21832737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.