BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 26140592)

  • 41. Structure/cleavage-based insights into helical perturbations at bulge sites within T. thermophilus Argonaute silencing complexes.
    Sheng G; Gogakos T; Wang J; Zhao H; Serganov A; Juranek S; Tuschl T; Patel DJ; Wang Y
    Nucleic Acids Res; 2017 Sep; 45(15):9149-9163. PubMed ID: 28911094
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Slicer function of Drosophila Argonautes and its involvement in RISC formation.
    Miyoshi K; Tsukumo H; Nagami T; Siomi H; Siomi MC
    Genes Dev; 2005 Dec; 19(23):2837-48. PubMed ID: 16287716
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hierarchical rules for Argonaute loading in Drosophila.
    Czech B; Zhou R; Erlich Y; Brennecke J; Binari R; Villalta C; Gordon A; Perrimon N; Hannon GJ
    Mol Cell; 2009 Nov; 36(3):445-56. PubMed ID: 19917252
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Role of Tertiary Structure in MicroRNA Target Recognition.
    Gan HH; Gunsalus KC
    Methods Mol Biol; 2019; 1970():43-64. PubMed ID: 30963487
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Single-Molecule Analysis for RISC Assembly and Target Cleavage.
    Sasaki HM; Tadakuma H; Tomari Y
    Methods Mol Biol; 2018; 1680():145-164. PubMed ID: 29030847
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Defining fundamental steps in the assembly of the Drosophila RNAi enzyme complex.
    Iwasaki S; Sasaki HM; Sakaguchi Y; Suzuki T; Tadakuma H; Tomari Y
    Nature; 2015 May; 521(7553):533-6. PubMed ID: 25822791
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Seed Mismatch Enhances Argonaute2-Catalyzed Cleavage and Partially Rescues Severely Impaired Cleavage Found in Fish.
    Chen GR; Sive H; Bartel DP
    Mol Cell; 2017 Dec; 68(6):1095-1107.e5. PubMed ID: 29272705
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Global analysis of AGO2-bound RNAs reveals that miRNAs induce cleavage of target RNAs with limited complementarity.
    Jung E; Seong Y; Jeon B; Song H; Kwon YS
    Biochim Biophys Acta Gene Regul Mech; 2017 Nov; 1860(11):1148-1158. PubMed ID: 29031931
    [TBL] [Abstract][Full Text] [Related]  

  • 49. New opportunities for designing effective small interfering RNAs.
    Valdés JJ; Miller AD
    Sci Rep; 2019 Nov; 9(1):16146. PubMed ID: 31695077
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A long look at short prokaryotic Argonautes.
    Koopal B; Mutte SK; Swarts DC
    Trends Cell Biol; 2023 Jul; 33(7):605-618. PubMed ID: 36428175
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Re-Engineering RNA Molecules into Therapeutic Agents.
    Egli M; Manoharan M
    Acc Chem Res; 2019 Apr; 52(4):1036-1047. PubMed ID: 30912917
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Clarifying mammalian RISC assembly in vitro.
    Tan GS; Garchow BG; Liu X; Metzler D; Kiriakidou M
    BMC Mol Biol; 2011 Apr; 12():19. PubMed ID: 21529364
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage.
    Sheng G; Zhao H; Wang J; Rao Y; Tian W; Swarts DC; van der Oost J; Patel DJ; Wang Y
    Proc Natl Acad Sci U S A; 2014 Jan; 111(2):652-7. PubMed ID: 24374628
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Argonaute Proteins and Mechanisms of RNA Interference in Eukaryotes and Prokaryotes.
    Olina AV; Kulbachinskiy AV; Aravin AA; Esyunina DM
    Biochemistry (Mosc); 2018 May; 83(5):483-497. PubMed ID: 29738683
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A programmable pAgo nuclease with universal guide and target specificity from the mesophilic bacterium Kurthia massiliensis.
    Kropocheva E; Kuzmenko A; Aravin AA; Esyunina D; Kulbachinskiy A
    Nucleic Acids Res; 2021 Apr; 49(7):4054-4065. PubMed ID: 33744962
    [TBL] [Abstract][Full Text] [Related]  

  • 56. DNA targeting and interference by a bacterial Argonaute nuclease.
    Kuzmenko A; Oguienko A; Esyunina D; Yudin D; Petrova M; Kudinova A; Maslova O; Ninova M; Ryazansky S; Leach D; Aravin AA; Kulbachinskiy A
    Nature; 2020 Nov; 587(7835):632-637. PubMed ID: 32731256
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Slicing-independent RISC activation requires the argonaute PAZ domain.
    Gu S; Jin L; Huang Y; Zhang F; Kay MA
    Curr Biol; 2012 Aug; 22(16):1536-42. PubMed ID: 22795694
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Life of RISC: Formation, action, and degradation of RNA-induced silencing complex.
    Iwakawa HO; Tomari Y
    Mol Cell; 2022 Jan; 82(1):30-43. PubMed ID: 34942118
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assembly and analysis of eukaryotic Argonaute-RNA complexes in microRNA-target recognition.
    Gan HH; Gunsalus KC
    Nucleic Acids Res; 2015 Nov; 43(20):9613-25. PubMed ID: 26432829
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functional Characterization of Entamoeba histolytica Argonaute Proteins Reveals a Repetitive DR-Rich Motif Region That Controls Nuclear Localization.
    Zhang H; Tran V; Manna D; Ehrenkaufer G; Singh U
    mSphere; 2019 Oct; 4(5):. PubMed ID: 31619501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.