BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26140682)

  • 1. Coarse-grained modeling of vesicle responses to active rotational nanoparticles.
    Zhang L; Wang X
    Nanoscale; 2015 Aug; 7(32):13458-67. PubMed ID: 26140682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing nanoparticle translocation through cell membranes by varying amphiphilic polymer coatings.
    Zhang L; Becton M; Wang X
    J Phys Chem B; 2015 Mar; 119(9):3786-94. PubMed ID: 25675048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of geometric nanoparticle rotation on cellular internalization process.
    Yang K; Yuan B; Ma YQ
    Nanoscale; 2013 Sep; 5(17):7998-8006. PubMed ID: 23863854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticle translocation through a lipid bilayer tuned by surface chemistry.
    da Rocha EL; Caramori GF; Rambo CR
    Phys Chem Chem Phys; 2013 Feb; 15(7):2282-90. PubMed ID: 23223270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-structure-regulated penetration of nanoparticles across a cell membrane.
    Li Y; Li X; Li Z; Gao H
    Nanoscale; 2012 Jun; 4(12):3768-75. PubMed ID: 22609866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic Synthesis of Hybrid Nanoparticles with Controlled Lipid Layers: Understanding Flexibility-Regulated Cell-Nanoparticle Interaction.
    Zhang L; Feng Q; Wang J; Zhang S; Ding B; Wei Y; Dong M; Ryu JY; Yoon TY; Shi X; Sun J; Jiang X
    ACS Nano; 2015 Oct; 9(10):9912-21. PubMed ID: 26448362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticle-Mediated Mechanical Destruction of Cell Membranes: A Coarse-Grained Molecular Dynamics Study.
    Zhang L; Zhao Y; Wang X
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):26665-26673. PubMed ID: 28719184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanotube-Enabled Vesicle-Vesicle Communication: A Computational Model.
    Zhang L; Wang X
    J Phys Chem Lett; 2015 Jul; 6(13):2530-7. PubMed ID: 26266730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A spontaneous penetration mechanism of patterned nanoparticles across a biomembrane.
    Li Y; Zhang X; Cao D
    Soft Matter; 2014 Sep; 10(35):6844-56. PubMed ID: 25082334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Reconfiguration of Binary Lipid Vesicles via Electrostatically Induced Nanoparticle Adsorption.
    Aydin F; Dutt M
    J Phys Chem B; 2016 Jul; 120(27):6646-56. PubMed ID: 27340906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of temperature and PEG grafting density on the translocation of PEGylated nanoparticles across asymmetric lipid membrane.
    Zhang Z; Lin X; Gu N
    Colloids Surf B Biointerfaces; 2017 Dec; 160():92-100. PubMed ID: 28918189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of vesicle spreading on surfaces: coarse-grained simulations.
    Fuhrmans M; Müller M
    Langmuir; 2013 Apr; 29(13):4335-49. PubMed ID: 23477455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress.
    Lai K; Wang B; Zhang Y; Zheng Y
    Phys Chem Chem Phys; 2013 Jan; 15(1):270-8. PubMed ID: 23165312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the Nanoscale Rotational Behaviors of Nanoparticles on the Cell Membranes: A Computational Model.
    Ji QJ; Yuan B; Lu XM; Yang K; Ma YQ
    Small; 2016 Mar; 12(9):1140-6. PubMed ID: 26436946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promote potential applications of nanoparticles as respiratory drug carrier: insights from molecular dynamics simulations.
    Lin X; Bai T; Zuo YY; Gu N
    Nanoscale; 2014 Mar; 6(5):2759-67. PubMed ID: 24464138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directional and Rotational Motions of Nanoparticles on Plasma Membranes as Local Probes of Surface Tension Propagation.
    Li S; Yan Z; Luo Z; Xu Y; Huang F; Hu G; Zhang X; Yue T
    Langmuir; 2019 Apr; 35(15):5333-5341. PubMed ID: 30908057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perspective on the Martini model.
    Marrink SJ; Tieleman DP
    Chem Soc Rev; 2013 Aug; 42(16):6801-22. PubMed ID: 23708257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular modeling of membrane responses to the adsorption of rotating nanoparticles: promoted cell uptake and mechanical membrane rupture.
    Yue T; Zhang X; Huang F
    Soft Matter; 2015 Jan; 11(3):456-65. PubMed ID: 25388826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of anionic, ligand-coated nanoparticles in lipid membranes.
    Angelikopoulos P; Sarkisov L; Cournia Z; Gkeka P
    Nanoscale; 2017 Jan; 9(3):1040-1048. PubMed ID: 27740657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperative transmembrane penetration of nanoparticles.
    Zhang H; Ji Q; Huang C; Zhang S; Yuan B; Yang K; Ma YQ
    Sci Rep; 2015 May; 5():10525. PubMed ID: 26013284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.