BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 26140683)

  • 1. Spontaneous preparation of hierarchically porous silica monoliths with uniform spherical mesopores confined in a well-defined macroporous framework.
    Guo X; Wang R; Yu H; Zhu Y; Nakanishi K; Kanamori K; Yang H
    Dalton Trans; 2015 Aug; 44(30):13592-601. PubMed ID: 26140683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of macroporous zirconia monoliths from ionic precursors via an epoxide-mediated sol-gel process accompanied by phase separation.
    Guo X; Song J; Lvlin Y; Nakanishi K; Kanamori K; Yang H
    Sci Technol Adv Mater; 2015 Apr; 16(2):025003. PubMed ID: 27877772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of a hierarchically porous AlPO
    Li W; Zhu Y; Guo X; Nakanishi K; Kanamori K; Yang H
    Sci Technol Adv Mater; 2013 Aug; 14(4):045007. PubMed ID: 27877600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchically porous titania thin film prepared by controlled phase separation and surfactant templating.
    Wu QL; Subramanian N; Rankin SE
    Langmuir; 2011 Aug; 27(15):9557-66. PubMed ID: 21711020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchically Porous Polymer Monoliths by Combining Controlled Macro- and Microphase Separation.
    Saba SA; Mousavi MP; Bühlmann P; Hillmyer MA
    J Am Chem Soc; 2015 Jul; 137(28):8896-9. PubMed ID: 26161727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Access to ultralarge-pore ordered mesoporous materials through selection of surfactant/swelling-agent micellar templates.
    Kruk M
    Acc Chem Res; 2012 Oct; 45(10):1678-87. PubMed ID: 22931347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A design of experiment approach to the sol–gel synthesis of titania monoliths for chromatographic applications.
    Abi Jaoudé M; Randon J; Bordes C; Lanteri P; Bois L
    Anal Bioanal Chem; 2012 May; 403(4):1145-55. PubMed ID: 22286081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural characterization of hierarchically porous alumina aerogel and xerogel monoliths.
    Tokudome Y; Nakanishi K; Kanamori K; Fujita K; Akamatsu H; Hanada T
    J Colloid Interface Sci; 2009 Oct; 338(2):506-13. PubMed ID: 19646712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical Porous Polystyrene Monoliths from PolyHIPE.
    Yang X; Tan L; Xia L; Wood CD; Tan B
    Macromol Rapid Commun; 2015 Sep; 36(17):1553-8. PubMed ID: 26178423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchically porous monoliths based on low-valence transition metal (Cu, Co, Mn) oxides: gelation and phase separation.
    Lu X; Kanamori K; Nakanishi K
    Natl Sci Rev; 2020 Nov; 7(11):1656-1666. PubMed ID: 34691501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drying of Hierarchically Organized Porous Silica Monoliths-Comparison of Evaporative and Supercritical Drying.
    Kohns R; Torres-Rodríguez J; Euchler D; Seyffertitz M; Paris O; Reichenauer G; Enke D; Huesing N
    Gels; 2023 Jan; 9(1):. PubMed ID: 36661837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanocrystalline celluloses-assisted preparation of hierarchical carbon monoliths for hexavalent chromium removal.
    Su H; Chong Y; Wang J; Long D; Qiao W; Ling L
    J Colloid Interface Sci; 2018 Jan; 510():77-85. PubMed ID: 28942067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of macroporous transition metal hydroxide monoliths via a sol-gel process accompanied by phase separation.
    Liu F; Feng D; Yang H; Guo X
    Sci Rep; 2020 Mar; 10(1):4331. PubMed ID: 32152357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition from transparent aerogels to hierarchically porous monoliths in polymethylsilsesquioxane sol-gel system.
    Kanamori K; Kodera Y; Hayase G; Nakanishi K; Hanada T
    J Colloid Interface Sci; 2011 May; 357(2):336-44. PubMed ID: 21377166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sol-gel synthesis of macro-mesoporous titania monoliths and their applications to chromatographic separation media for organophosphate compounds.
    Konishi J; Fujita K; Nakanishi K; Hirao K; Morisato K; Miyazaki S; Ohira M
    J Chromatogr A; 2009 Oct; 1216(44):7375-83. PubMed ID: 19580973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllable Assembly of Hierarchical Macroporous-Mesoporous LnFeO₃ and Their Catalytic Performance in the CO + NO Reaction.
    Li ZX; Shi FB; Yan CH
    Langmuir; 2015 Aug; 31(31):8672-9. PubMed ID: 26196258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Li2FeSiO4-carbon monoliths with controlled macropores: effects of pore properties on electrode performance.
    Hasegawa G; Sannohe M; Ishihara Y; Kanamori K; Nakanishi K; Abe T
    Phys Chem Chem Phys; 2013 Jun; 15(22):8736-43. PubMed ID: 23628943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-architectural silica thin films with two-dimensionally connected cagelike pores synthesized from vapor phase.
    Tanaka S; Nishiyama N; Oku Y; Egashira Y; Ueyama K
    J Am Chem Soc; 2004 Apr; 126(15):4854-8. PubMed ID: 15080689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sol-gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations.
    Nakanishi K; Tanaka N
    Acc Chem Res; 2007 Sep; 40(9):863-73. PubMed ID: 17650924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimodal Zr-Silicalite-1 zeolite nanocrystal aggregates with interconnected hierarchically micro-meso-macroporous architecture and enhanced mass transport property.
    Chen LH; Xu ST; Li XY; Tian G; Li Y; Rooke JC; Zhu GS; Qiu SL; Wei YX; Yang XY; Liu ZM; Su BL
    J Colloid Interface Sci; 2012 Jul; 377(1):368-74. PubMed ID: 22498367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.