BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 26140683)

  • 41. Controlled pore formation in organotrialkoxysilane-derived hybrids: from aerogels to hierarchically porous monoliths.
    Kanamori K; Nakanishi K
    Chem Soc Rev; 2011 Feb; 40(2):754-70. PubMed ID: 21085718
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis of hierarchically nanoporous silica films for controlled drug loading and release.
    Xu M; Feng D; Dai R; Wu H; Zhao D; Zheng G
    Nanoscale; 2011 Aug; 3(8):3329-33. PubMed ID: 21717013
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fabrication of hierarchically porous spherical particles by assembling mesoporous silica nanoparticles via spray drying.
    Urata C; Yamauchi Y; Aoyama Y; Imasu J; Todoroki S; Sakka Y; Inoue S; Kuroda K
    J Nanosci Nanotechnol; 2008 Jun; 8(6):3101-5. PubMed ID: 18681053
    [TBL] [Abstract][Full Text] [Related]  

  • 44. General synthesis of discrete mesoporous carbon microspheres through a confined self-assembly process in inverse opals.
    Sun Z; Liu Y; Li B; Wei J; Wang M; Yue Q; Deng Y; Kaliaguine S; Zhao D
    ACS Nano; 2013 Oct; 7(10):8706-14. PubMed ID: 24044674
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Monolithic poly(1,2-bis(p-vinylphenyl)ethane) capillary columns for simultaneous separation of low- and high-molecular-weight compounds.
    Greiderer A; Ligon SC; Huck CW; Bonn GK
    J Sep Sci; 2009 Aug; 32(15-16):2510-20. PubMed ID: 19598164
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Construction and Transition Metal Oxide Loading of Hierarchically Porous Carbon Aerogels.
    Wang J; Ruan X; Qiu J; Liang H; Guo X; Yang H
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32932864
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Formation of interpenetrating hierarchical titania structures by confined synthesis in inverse opal.
    Mandlmeier B; Szeifert JM; Fattakhova-Rohlfing D; Amenitsch H; Bein T
    J Am Chem Soc; 2011 Nov; 133(43):17274-82. PubMed ID: 21888389
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Construction of a hierarchical architecture in a wormhole-like mesostructure for enhanced mass transport.
    Liang Y; Liang F; Wu D; Li Z; Xu F; Fu R
    Phys Chem Chem Phys; 2011 May; 13(19):8852-6. PubMed ID: 21455528
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preparation of silica sphere with porous structure in supercritical carbon dioxide.
    Chatterjee M; Chatterjee A; Ikushima Y; Kawanami H; Ishizaka T; Sato M; Suzuki T; Yokoyama T
    J Colloid Interface Sci; 2010 Aug; 348(1):57-64. PubMed ID: 20417524
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Preparation and photocatalytic activity of robust titania monoliths for water remediation.
    Nakata K; Kagawa T; Sakai M; Liu S; Ochiai T; Sakai H; Murakami T; Abe M; Fujishima A
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):500-4. PubMed ID: 23327736
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis and photocatalytic activity of titania monoliths prepared with controlled macro- and mesopore structure.
    Drisko GL; Zelcer A; Wang X; Caruso RA; Soler-Illia GJ
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4123-30. PubMed ID: 22775206
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sol-Gel Synthesis and Fine Characterization of Hierarchically Porous and Multifunctional Silica-Based Membranes.
    Ayral A
    Chem Rec; 2018 Jul; 18(7-8):878-890. PubMed ID: 29316287
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hierarchically porous aminosilica monolith as a CO2 adsorbent.
    Ko YG; Lee HJ; Kim JY; Choi US
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12988-96. PubMed ID: 25017002
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Strong silica monoliths with large mesopores prepared using agarose gel templates.
    Drisko GL; Wang X; Caruso RA
    Langmuir; 2011 Mar; 27(6):2124-7. PubMed ID: 21284397
    [TBL] [Abstract][Full Text] [Related]  

  • 55. New hierarchically porous titania monoliths for chromatographic separation media.
    Hasegawa G; Morisato K; Kanamori K; Nakanishi K
    J Sep Sci; 2011 Nov; 34(21):3004-10. PubMed ID: 21898819
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Confined interfacial micelle aggregating assembly of ordered macro-mesoporous tungsten oxides for H
    Zhao T; Fan Y; Sun Z; Yang J; Zhu X; Jiang W; Wang L; Deng Y; Cheng X; Qiu P; Luo W
    Nanoscale; 2020 Oct; 12(40):20811-20819. PubMed ID: 33034596
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A two-step route to synthesis of small-pored and thick-walled SBA-16-type mesoporous silica under mildly acidic conditions.
    Jin Z; Wang X; Cui X
    J Colloid Interface Sci; 2007 Mar; 307(1):158-65. PubMed ID: 17126358
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rigid crosslinked polyacrylamide monoliths with well-defined macropores synthesized by living polymerization.
    Hasegawa J; Kanamori K; Nakanishi K; Hanada T; Yamago S
    Macromol Rapid Commun; 2009 Jun; 30(12):986-90. PubMed ID: 21706559
    [TBL] [Abstract][Full Text] [Related]  

  • 59. One-pot preparation and uranyl adsorption properties of hierarchically porous zirconium titanium oxide beads using phase separation processes to vary macropore morphology.
    Drisko GL; Chee Kimling M; Scales N; Ide A; Sizgek E; Caruso RA; Luca V
    Langmuir; 2010 Nov; 26(22):17581-8. PubMed ID: 20936801
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hierarchical porous silica materials with a trimodal pore system using surfactant templates.
    Kuang D; Brezesinski T; Smarsly B
    J Am Chem Soc; 2004 Sep; 126(34):10534-5. PubMed ID: 15327299
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.