These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26140985)

  • 1. Nuclear versus cytosolic activity of the yeast Hog1 MAP kinase in response to osmotic and tunicamycin-induced ER stress.
    García-Marqués S; Randez-Gil F; Prieto JA
    FEBS Lett; 2015 Jul; 589(16):2163-8. PubMed ID: 26140985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The activity of yeast Hog1 MAPK is required during endoplasmic reticulum stress induced by tunicamycin exposure.
    Torres-Quiroz F; García-Marqués S; Coria R; Randez-Gil F; Prieto JA
    J Biol Chem; 2010 Jun; 285(26):20088-96. PubMed ID: 20430884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initiation of the transcriptional response to hyperosmotic shock correlates with the potential for volume recovery.
    Geijer C; Medrala-Klein D; Petelenz-Kurdziel E; Ericsson A; Smedh M; Andersson M; Goksör M; Nadal-Ribelles M; Posas F; Krantz M; Nordlander B; Hohmann S
    FEBS J; 2013 Aug; 280(16):3854-67. PubMed ID: 23758973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence that C-terminal non-kinase domain of Pbs2p has a role in high osmolarity-induced nuclear localization of Hog1p.
    Sharma P; Mondal AK
    Biochem Biophys Res Commun; 2005 Mar; 328(4):906-13. PubMed ID: 15707964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunicamycin Sensitivity-Suppression by High Gene Dosage Reveals New Functions of the Yeast Hog1 MAP Kinase.
    Hernández-Elvira M; Martínez-Gómez R; Domínguez-Martin E; Méndez A; Kawasaki L; Ongay-Larios L; Coria R
    Cells; 2019 Jul; 8(7):. PubMed ID: 31336877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The HOG MAP kinase pathway is required for the induction of methylglyoxal-responsive genes and determines methylglyoxal resistance in Saccharomyces cerevisiae.
    Aguilera J; Rodríguez-Vargas S; Prieto JA
    Mol Microbiol; 2005 Apr; 56(1):228-39. PubMed ID: 15773992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae.
    Rep M; Albertyn J; Thevelein JM; Prior BA; Hohmann S
    Microbiology (Reading); 1999 Mar; 145 ( Pt 3)():715-727. PubMed ID: 10217506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinase activity-dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hog1 mitogen-activated protein kinase in the budding yeast Saccharomyces cerevisiae.
    Reiser V; Ruis H; Ammerer G
    Mol Biol Cell; 1999 Apr; 10(4):1147-61. PubMed ID: 10198063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation.
    Ansell R; Granath K; Hohmann S; Thevelein JM; Adler L
    EMBO J; 1997 May; 16(9):2179-87. PubMed ID: 9171333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae.
    Panadero J; Pallotti C; Rodríguez-Vargas S; Randez-Gil F; Prieto JA
    J Biol Chem; 2006 Feb; 281(8):4638-45. PubMed ID: 16371351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-cancer drug KP1019 induces Hog1 phosphorylation and protein ubiquitylation in Saccharomyces cerevisiae.
    Singh V; Azad GK; Reddy M A; Baranwal S; Tomar RS
    Eur J Pharmacol; 2014 Aug; 736():77-85. PubMed ID: 24797784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycerol formation during wine fermentation is mainly linked to Gpd1p and is only partially controlled by the HOG pathway.
    Remize F; Cambon B; Barnavon L; Dequin S
    Yeast; 2003 Nov; 20(15):1243-53. PubMed ID: 14618562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordinated gene regulation in the initial phase of salt stress adaptation.
    Vanacloig-Pedros E; Bets-Plasencia C; Pascual-Ahuir A; Proft M
    J Biol Chem; 2015 Apr; 290(16):10163-75. PubMed ID: 25745106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Hog1, Tps1 and Sod1 in boric acid tolerance of Saccharomyces cerevisiae.
    Schmidt M; Akasaka K; Messerly JT; Boyer MP
    Microbiology (Reading); 2012 Oct; 158(Pt 10):2667-2678. PubMed ID: 22902726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yeast osmoregulation.
    Hohmann S; Krantz M; Nordlander B
    Methods Enzymol; 2007; 428():29-45. PubMed ID: 17875410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of mitogen-activated protein kinase signaling specificity in response to hyperosmotic stress: use of an analog-sensitive HOG1 allele.
    Westfall PJ; Thorner J
    Eukaryot Cell; 2006 Aug; 5(8):1215-28. PubMed ID: 16896207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vacuolar H+-ATPase works in parallel with the HOG pathway to adapt Saccharomyces cerevisiae cells to osmotic stress.
    Li SC; Diakov TT; Rizzo JM; Kane PM
    Eukaryot Cell; 2012 Mar; 11(3):282-91. PubMed ID: 22210831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cdc37p is required for stress-induced high-osmolarity glycerol and protein kinase C mitogen-activated protein kinase pathway functionality by interaction with Hog1p and Slt2p (Mpk1p).
    Hawle P; Horst D; Bebelman JP; Yang XX; Siderius M; van der Vies SM
    Eukaryot Cell; 2007 Mar; 6(3):521-32. PubMed ID: 17220467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway.
    Albertyn J; Hohmann S; Thevelein JM; Prior BA
    Mol Cell Biol; 1994 Jun; 14(6):4135-44. PubMed ID: 8196651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The stress-activated protein kinase Hog1 develops a critical role after resting state.
    Escoté X; Miranda M; Rodríguez-Porrata B; Mas A; Cordero R; Posas F; Vendrell J
    Mol Microbiol; 2011 Apr; 80(2):423-35. PubMed ID: 21371138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.