These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 26141051)

  • 1. AFM visualization of cortical filaments/network under cell-bound membrane vesicles.
    Zhang X; Tang Q; Wu L; Huang J; Chen Y
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):2225-32. PubMed ID: 26141051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles.
    Zhang X; Chen Y; Chen Y
    Biochem Biophys Res Commun; 2014 Mar; 446(1):375-9. PubMed ID: 24607905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic single-vesicle tracking of cell-bound membrane vesicles on resting, activated, and cytoskeleton-disrupted cells.
    Zhang W; Xu Y; Chen G; Wang K; Shan W; Chen Y
    Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):26-33. PubMed ID: 30393161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic Force Microscopy Reveals the Dynamic Morphology of Fenestrations in Live Liver Sinusoidal Endothelial Cells.
    Zapotoczny B; Szafranska K; Owczarczyk K; Kus E; Chlopicki S; Szymonski M
    Sci Rep; 2017 Aug; 7(1):7994. PubMed ID: 28801568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing in vivo dynamics of mitochondria and cortical actin networks using high-speed atomic force/fluorescence microscopy.
    Yoshida A; Sakai N; Uekusa Y; Deguchi K; Gilmore JL; Kumeta M; Ito S; Takeyasu K
    Genes Cells; 2015 Feb; 20(2):85-94. PubMed ID: 25440894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AFM sensing cortical actin cytoskeleton destabilization during plasma membrane electropermeabilization.
    Louise C; Etienne D; Marie-Pierre R
    Cytoskeleton (Hoboken); 2014 Oct; 71(10):587-94. PubMed ID: 25308626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observing the growth of individual actin filaments in cell extracts by time-lapse atomic force microscopy.
    Lehto T; Miaczynska M; Zerial M; Müller DJ; Severin F
    FEBS Lett; 2003 Sep; 551(1-3):25-8. PubMed ID: 12965199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of the unroofing technique for atomic force microscopic imaging of the intra-cellular cytoskeleton under aqueous conditions.
    Usukura J; Yoshimura A; Minakata S; Youn D; Ahn J; Cho SJ
    J Electron Microsc (Tokyo); 2012; 61(5):321-6. PubMed ID: 22872282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-series investigation of fused vesicles in microvessel endothelial cells with atomic force microscopy.
    Chen L; Chu W; Xu Y; Chen P; Lao F; Sun Q; Feng X; Han D
    Microsc Res Tech; 2010 Feb; 73(2):152-9. PubMed ID: 19725060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fixed endothelial cells exhibit physiologically relevant nanomechanics of the cortical actin web.
    Grimm KB; Oberleithner H; Fels J
    Nanotechnology; 2014 May; 25(21):215101. PubMed ID: 24786855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructural localization of concanavalin A receptors in the plasma membrane: association with underlying actin filaments.
    Katsumoto T; Kurimura T
    Biol Cell; 1988; 62(1):1-10. PubMed ID: 3365514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging of the cortical cytoskeleton of guinea pig outer hair cells using atomic force microscopy.
    Wada H; Kimura K; Gomi T; Sugawara M; Katori Y; Kakehata S; Ikeda K; Kobayashi T
    Hear Res; 2004 Jan; 187(1-2):51-62. PubMed ID: 14698087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of actin rearrangement and degranulation on the membrane structure of primary mast cells: a combined atomic force and laser scanning confocal microscopy investigation.
    Deng Z; Zink T; Chen HY; Walters D; Liu FT; Liu GY
    Biophys J; 2009 Feb; 96(4):1629-39. PubMed ID: 19217878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutaraldehyde fixation preserves the trend of elasticity alterations for endothelial cells exposed to TNF-α.
    Targosz-Korecka M; Brzezinka GD; Danilkiewicz J; Rajfur Z; Szymonski M
    Cytoskeleton (Hoboken); 2015 Mar; 72(3):124-30. PubMed ID: 25786919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple membrane tethers probed by atomic force microscopy.
    Sun M; Graham JS; Hegedüs B; Marga F; Zhang Y; Forgacs G; Grandbois M
    Biophys J; 2005 Dec; 89(6):4320-9. PubMed ID: 16183875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and composition of the fusion pore.
    Jena BP; Cho SJ; Jeremic A; Stromer MH; Abu-Hamdah R
    Biophys J; 2003 Feb; 84(2 Pt 1):1337-43. PubMed ID: 12547814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ruffled border and attachment regions of the apposing membrane of resorbing osteoclasts as visualized from the cytoplasmic face of the membrane.
    Akisaka T; Yoshida H; Suzuki R
    J Electron Microsc (Tokyo); 2006 Apr; 55(2):53-61. PubMed ID: 16775216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging of the cytoplasmic leaflet of the plasma membrane by atomic force microscopy.
    Le Grimellec C; Lesniewska E; Giocondi MC; Cachia C; Schreiber JP; Goudonnet JP
    Scanning Microsc; 1995 Jun; 9(2):401-10; discussion 410-1. PubMed ID: 8714737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Actin-spectrin scaffold supports open fenestrae in liver sinusoidal endothelial cells.
    Zapotoczny B; Braet F; Kus E; Ginda-Mäkelä K; Klejevskaja B; Campagna R; Chlopicki S; Szymonski M
    Traffic; 2019 Dec; 20(12):932-942. PubMed ID: 31569283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-vesicle tracking reveals the potential correlation of the movement of cell-bound membrane vesicles (CBMVs) with cell migration.
    Zhang W; Gu J; Li Y; Shan W; Xu Y; Chen Y
    Biochim Biophys Acta Mol Cell Res; 2020 Nov; 1867(11):118804. PubMed ID: 32738252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.