These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26141149)

  • 21. The Growth Dependent Design Constraints of Transcription-Factor-Based Metabolite Biosensors.
    Hartline CJ; Zhang F
    ACS Synth Biol; 2022 Jul; 11(7):2247-2258. PubMed ID: 35700119
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Progress on molecular breeding and metabolic engineering of biosynthesis pathways of C(30), C(35), C(40), C(45), C(50) carotenoids.
    Wang F; Jiang JG; Chen Q
    Biotechnol Adv; 2007; 25(3):211-22. PubMed ID: 17257797
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of factors influencing production of the monocyclic carotenoid torulene in metabolically engineered Escherichia coli.
    Lee PC; Mijts BN; Schmidt-Dannert C
    Appl Microbiol Biotechnol; 2004 Oct; 65(5):538-46. PubMed ID: 15168092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pathway engineering strategies for production of beneficial carotenoids in microbial hosts.
    Ye VM; Bhatia SK
    Biotechnol Lett; 2012 Aug; 34(8):1405-14. PubMed ID: 22488437
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity.
    Park SY; Binkley RM; Kim WJ; Lee MH; Lee SY
    Metab Eng; 2018 Sep; 49():105-115. PubMed ID: 30096424
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis.
    Yoon SH; Kim JE; Lee SH; Park HM; Choi MS; Kim JY; Lee SH; Shin YC; Keasling JD; Kim SW
    Appl Microbiol Biotechnol; 2007 Feb; 74(1):131-9. PubMed ID: 17115209
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modularization and Response Curve Engineering of a Naringenin-Responsive Transcriptional Biosensor.
    De Paepe B; Maertens J; Vanholme B; De Mey M
    ACS Synth Biol; 2018 May; 7(5):1303-1314. PubMed ID: 29688705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic engineering of Escherichia coli to produce zeaxanthin.
    Li XR; Tian GQ; Shen HJ; Liu JZ
    J Ind Microbiol Biotechnol; 2015 Apr; 42(4):627-36. PubMed ID: 25533633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring the differential mechanisms of carotenoid biosynthesis in the yellow peel and red flesh of papaya.
    Shen YH; Yang FY; Lu BG; Zhao WW; Jiang T; Feng L; Chen XJ; Ming R
    BMC Genomics; 2019 Jan; 20(1):49. PubMed ID: 30651061
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic engineering of the violacein biosynthetic pathway toward a low-cost, minimal-equipment lead biosensor.
    Hui CY; Guo Y; Zhu DL; Li LM; Yi J; Zhang NX
    Biosens Bioelectron; 2022 Oct; 214():114531. PubMed ID: 35810697
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced lycopene productivity by manipulation of carbon flow to isopentenyl diphosphate in Escherichia coli.
    Vadali RV; Fu Y; Bennett GN; San KY
    Biotechnol Prog; 2005; 21(5):1558-61. PubMed ID: 16209562
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring natural biodiversity to expand access to microbial terpene synthesis.
    Rico J; Duquesne K; Petit JL; Mariage A; Darii E; Peruch F; de Berardinis V; Iacazio G
    Microb Cell Fact; 2019 Feb; 18(1):23. PubMed ID: 30709396
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient production of lycopene by engineered E. coli strains harboring different types of plasmids.
    Xu J; Xu X; Xu Q; Zhang Z; Jiang L; Huang H
    Bioprocess Biosyst Eng; 2018 Apr; 41(4):489-499. PubMed ID: 29313097
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increase of lycopene production by supplementing auxiliary carbon sources in metabolically engineered Escherichia coli.
    Kim YS; Lee JH; Kim NH; Yeom SJ; Kim SW; Oh DK
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):489-97. PubMed ID: 21246354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biosensor-guided improvements in salicylate production by recombinant Escherichia coli.
    Qian S; Li Y; Cirino PC
    Microb Cell Fact; 2019 Jan; 18(1):18. PubMed ID: 30696431
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli.
    Alper H; Jin YS; Moxley JF; Stephanopoulos G
    Metab Eng; 2005 May; 7(3):155-64. PubMed ID: 15885614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation.
    Cunningham FX; Pogson B; Sun Z; McDonald KA; DellaPenna D; Gantt E
    Plant Cell; 1996 Sep; 8(9):1613-26. PubMed ID: 8837512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biosynthesis of structurally novel carotenoids in Escherichia coli.
    Lee PC; Momen AZ; Mijts BN; Schmidt-Dannert C
    Chem Biol; 2003 May; 10(5):453-62. PubMed ID: 12770827
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Precise precursor rebalancing for isoprenoids production by fine control of gapA expression in Escherichia coli.
    Jung J; Lim JH; Kim SY; Im DK; Seok JY; Lee SV; Oh MK; Jung GY
    Metab Eng; 2016 Nov; 38():401-408. PubMed ID: 27725264
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic Redesign of Rhodobacter sphaeroides for Lycopene Production.
    Su A; Chi S; Li Y; Tan S; Qiang S; Chen Z; Meng Y
    J Agric Food Chem; 2018 Jun; 66(23):5879-5885. PubMed ID: 29806774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.