BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 26141280)

  • 1. The effect of iron dosing on reducing waste activated sludge in the oxic-settling-anoxic process.
    Yagci N; Novak JT; Randall CW; Orhon D
    Bioresour Technol; 2015 Oct; 193():213-8. PubMed ID: 26141280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosolids reduction by the oxic-settling-anoxic process: Impact of sludge interchange rate.
    Semblante GU; Hai FI; Bustamante H; Guevara N; Price WE; Nghiem LD
    Bioresour Technol; 2016 Jun; 210():167-73. PubMed ID: 26810193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of sludge interchange times on the oxic-settling-anoxic process.
    Sun L; Randall CW; Novak JT
    Water Environ Res; 2010 Jun; 82(6):519-23. PubMed ID: 20572459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sludge cycling between aerobic, anoxic and anaerobic regimes to reduce sludge production during wastewater treatment: performance, mechanisms, and implications.
    Semblante GU; Hai FI; Ngo HH; Guo W; You SJ; Price WE; Nghiem LD
    Bioresour Technol; 2014 Mar; 155():395-409. PubMed ID: 24529987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous organic carbon and nitrogen removal in an anoxic-oxic activated sludge system under various operating conditions.
    Rasool K; Ahn DH; Lee DS
    Bioresour Technol; 2014 Jun; 162():373-8. PubMed ID: 24768910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracking influent inorganic suspended solids through wastewater treatment plants.
    Ekama GA; Wentzel MC; Sötemann SW
    Water Sci Technol; 2006; 54(8):101-9. PubMed ID: 17163018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new sulfidogenic oxic-settling anaerobic (SOSA) process: The effects of sulfur-cycle bioaugmentation on the operational performance, sludge properties and microbial communities.
    Huang H; Ekama GA; Biswal BK; Dai J; Jiang F; Chen GH; Wu D
    Water Res; 2019 Oct; 162():30-42. PubMed ID: 31254884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of low ORP in anoxic sludge zone on excess sludge production in oxic-settling-anoxic activated sludge process.
    Saby S; Djafer M; Chen GH
    Water Res; 2003 Jan; 37(1):11-20. PubMed ID: 12465783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic side-stream reactor for excess sludge reduction: 5-year management of a full-scale plant.
    Velho VF; Foladori P; Andreottola G; Costa RH
    J Environ Manage; 2016 Jul; 177():223-30. PubMed ID: 27107390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the sludge reduction mechanism in the anaerobic side-stream reactor process using several control biological wastewater treatment processes.
    Chon DH; Rome M; Kim YM; Park KY; Park C
    Water Res; 2011 Nov; 45(18):6021-9. PubMed ID: 21937073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of return sludge alkaline treatment on sludge reduction in laboratory-scale anaerobic-anoxic-oxic process.
    Zhang W; Xiao B; Li Y; Liu Y; Guo X
    J Biotechnol; 2018 Nov; 285():1-5. PubMed ID: 30170105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights on mechanisms of excess sludge minimization in an oxic-settling-anaerobic process under different operating conditions and plant configurations.
    Corsino SF; Carabillò M; Cosenza A; De Marines F; Di Trapani D; Traina F; Torregrossa M; Viviani G
    Chemosphere; 2023 Jan; 312(Pt 1):137090. PubMed ID: 36334748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying the mechanisms of sludge reduction in the sulfidogenic oxic-settling anaerobic (SOSA) process: Side-stream sulfidogenesis-intensified sludge decay and mainstream extended aeration.
    Huang H; Ekama G; Deng YF; Chen GH; Wu D
    Water Res; 2021 Feb; 189():116608. PubMed ID: 33189974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolution of conflict of reduced sludge production with EBPR by coupling OSA to A
    Khursheed A; Munshi FMA; Almohana AI; Alali AF; Kamal MA; Alam S; Alrehaili O; Islam DT; Kumar M; Varjani S; Kazmi AA; Tyagi VK
    Chemosphere; 2023 Mar; 318():137945. PubMed ID: 36702406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial community in anoxic-oxic-settling-anaerobic sludge reduction process revealed by 454 pyrosequencing analysis.
    Ning X; Qiao W; Zhang L; Gao X
    Can J Microbiol; 2014 Dec; 60(12):799-809. PubMed ID: 25388228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small sewage treatment system with an anaerobic-anoxic-aerobic combined biofilter.
    Park SM; Jun HB; Hong SP; Kwon JC
    Water Sci Technol; 2003; 48(11-12):213-20. PubMed ID: 14753539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of sludge reduction in an oxic-settling-anoxic system operated with step feeding regime for nutrient removal and fed with real domestic wastewater.
    Karlikanovaite-Balikci A; Yagci N
    J Environ Manage; 2019 Aug; 243():385-392. PubMed ID: 31103684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of BNR activated sludge systems with membrane and settling tank solid-liquid separation.
    Ramphao MC; Wentzel MC; Ekama GA; Alexander WV
    Water Sci Technol; 2006; 53(12):295-303. PubMed ID: 16889266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerobic sludge granulation in a full-scale sequencing batch reactor.
    Li J; Ding LB; Cai A; Huang GX; Horn H
    Biomed Res Int; 2014; 2014():268789. PubMed ID: 24822190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.