These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 26141377)

  • 1. Electron self-exchange in hemoglobins revealed by deutero-hemin substitution.
    Athwal NS; Alagurajan J; Sturms R; Fulton DB; Andreotti AH; Hargrove MS
    J Inorg Biochem; 2015 Sep; 150():139-47. PubMed ID: 26141377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxylamine reduction to ammonium by plant and cyanobacterial hemoglobins.
    Sturms R; DiSpirito AA; Fulton DB; Hargrove MS
    Biochemistry; 2011 Dec; 50(50):10829-35. PubMed ID: 22080728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Reversible Histidine Coordination in Hydroxylamine Reduction by Plant Hemoglobins (Phytoglobins).
    Athwal NS; Alagurajan J; Andreotti AH; Hargrove MS
    Biochemistry; 2016 Oct; 55(41):5809-5817. PubMed ID: 27661977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant and cyanobacterial hemoglobins reduce nitrite to nitric oxide under anoxic conditions.
    Sturms R; DiSpirito AA; Hargrove MS
    Biochemistry; 2011 May; 50(19):3873-8. PubMed ID: 21495624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bis-histidyl hexacoordination in hemoglobins facilitates heme reduction kinetics.
    Weiland TR; Kundu S; Trent JT; Hoy JA; Hargrove MS
    J Am Chem Soc; 2004 Sep; 126(38):11930-5. PubMed ID: 15382928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steady-State Kinetics of Phytoglobin-Catalyzed Reduction of Hydroxylamine to Ammonium.
    Alagurajan J; Singh Athwal N; Hargrove MS
    Biochemistry; 2018 Aug; 57(32):4824-4832. PubMed ID: 30001111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron self-exchange and self-amplified posttranslational modification in the hemoglobins from Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002.
    Preimesberger MR; Pond MP; Majumdar A; Lecomte JT
    J Biol Inorg Chem; 2012 Apr; 17(4):599-609. PubMed ID: 22349976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of a recombinant cognate hemoglobin reductase from Synechocystis sp. PCC 6803.
    Uppal S; Khan MA; Kundu S
    Int J Biol Macromol; 2020 Nov; 162():1054-1063. PubMed ID: 32603730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing Low Redox Stability of Myoglobin Relative to Rapid Hemin Loss from Hemoglobin.
    Cai H; Tatiyaborworntham N; Yin J; Richards MP
    J Food Sci; 2016 Jan; 81(1):C42-8. PubMed ID: 26606132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The reactions of myoglobin, normal adult hemoglobin, sickle cell hemoglobin and hemin with hydroxyurea.
    Rupon JW; Domingo SR; Smith SV; Gummadi BK; Shields H; Ballas SK; King SB; Kim-Shapiro DB
    Biophys Chem; 2000 Feb; 84(1):1-11. PubMed ID: 10723540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reductive activation of dioxygen by a myoglobin reconstituted with a flavohemin.
    Matsuo T; Hayashi T; Hisaeda Y
    J Am Chem Soc; 2002 Sep; 124(38):11234-5. PubMed ID: 12236714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic docking of cytochrome b5 with myoglobin and alpha-hemoglobin: heme-neutralization "squares" and the binding of electron-transfer-reactive configurations.
    Wheeler KE; Nocek JM; Cull DA; Yatsunyk LA; Rosenzweig AC; Hoffman BM
    J Am Chem Soc; 2007 Apr; 129(13):3906-17. PubMed ID: 17343378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site E14 in hemoglobins and myoglobins: a key residue that affects hemin loss and lipid oxidation capacity.
    Cai H; Richards MP
    J Agric Food Chem; 2012 Aug; 60(31):7729-34. PubMed ID: 22681513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyanide binding to hexacoordinate cyanobacterial hemoglobins: hydrogen-bonding network and heme pocket rearrangement in ferric H117A Synechocystis hemoglobin.
    Vu BC; Nothnagel HJ; Vuletich DA; Falzone CJ; Lecomte JT
    Biochemistry; 2004 Oct; 43(39):12622-33. PubMed ID: 15449952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the protein matrix on intramolecular histidine ligation in ferric and ferrous hexacoordinate hemoglobins.
    Halder P; Trent JT; Hargrove MS
    Proteins; 2007 Jan; 66(1):172-82. PubMed ID: 17044063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [On the effect of hydrogen ion concentration and SH reagents on the redox potential of hemin, equine myoglobin and different hemoglobins].
    BEHLKE J; SCHELER W
    Acta Biol Med Ger; 1962; 8():88-102. PubMed ID: 13866585
    [No Abstract]   [Full Text] [Related]  

  • 17. Mechanisms of heme protein-mediated lipid oxidation using hemoglobin and myoglobin variants in raw and heated washed muscle.
    Grunwald EW; Richards MP
    J Agric Food Chem; 2006 Oct; 54(21):8271-80. PubMed ID: 17032039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cyanobacterial hemoglobin with unusual ligand binding kinetics and stability properties.
    Thorsteinsson MV; Bevan DR; Potts M; Dou Y; Eich RF; Hargrove MS; Gibson QH; Olson JS
    Biochemistry; 1999 Feb; 38(7):2117-26. PubMed ID: 10026295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A general method for determining the electron self-exchange rates of blue copper proteins by longitudinal NMR relaxation.
    Jensen MR; Hansen DF; Led JJ
    J Am Chem Soc; 2002 Apr; 124(15):4093-6. PubMed ID: 11942848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Nernst equation applied to oxidation-reduction reactions in myoglobin and hemoglobin. Evaluation of the parameters.
    Saroff HA
    Biopolymers; 2007 Apr 5-15; 85(5-6):450-5. PubMed ID: 17154397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.