These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26141377)

  • 21. Attributes of lipid oxidation due to bovine myoglobin, hemoglobin and hemolysate.
    Yin J; Zhang W; Richards MP
    Food Chem; 2017 Nov; 234():230-235. PubMed ID: 28551230
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of protein-ligand interactions on hydrogen/deuterium exchange kinetics: canonical and noncanonical scenarios.
    Sowole MA; Konermann L
    Anal Chem; 2014 Jul; 86(13):6715-22. PubMed ID: 24904985
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanism of NO-induced oxidation of myoglobin and hemoglobin.
    Eich RF; Li T; Lemon DD; Doherty DH; Curry SR; Aitken JF; Mathews AJ; Johnson KA; Smith RD; Phillips GN; Olson JS
    Biochemistry; 1996 Jun; 35(22):6976-83. PubMed ID: 8679521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electron-transfer self-exchange kinetics of trimethylphosphine horse-heart myoglobin.
    Brunel C; Bondon A; Simonneaux G
    Biochim Biophys Acta; 1992 Jul; 1101(1):73-8. PubMed ID: 1633178
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contribution of the heme propionate groups to the electron transfer and electrostatic properties of myoglobin.
    Lim AR; Sishta BP; Mauk AG
    J Inorg Biochem; 2006 Dec; 100(12):2017-23. PubMed ID: 17070916
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct measurement of equilibrium constants for high-affinity hemoglobins.
    Kundu S; Premer SA; Hoy JA; Trent JT; Hargrove MS
    Biophys J; 2003 Jun; 84(6):3931-40. PubMed ID: 12770899
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Slow ligand binding kinetics dominate ferrous hexacoordinate hemoglobin reactivities and reveal differences between plants and other species.
    Smagghe BJ; Sarath G; Ross E; Hilbert JL; Hargrove MS
    Biochemistry; 2006 Jan; 45(2):561-70. PubMed ID: 16401085
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct voltammetric investigation of the electrochemical properties of human hemoglobin: relevance to physiological redox chemistry.
    Blankman JI; Shahzad N; Miller CJ; Guiles RD
    Biochemistry; 2000 Dec; 39(48):14806-12. PubMed ID: 11101296
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic docking and electron-transfer between cytochrome b5 and a suite of myoglobin surface-charge mutants. Introduction of a functional-docking algorithm for protein-protein complexes.
    Liang ZX; Kurnikov IV; Nocek JM; Mauk AG; Beratan DN; Hoffman BM
    J Am Chem Soc; 2004 Mar; 126(9):2785-98. PubMed ID: 14995196
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NO* release from MbFe(II)NO and HbFe(II)NO after oxidation by peroxynitrite.
    Herold S; Boccini F
    Inorg Chem; 2006 Aug; 45(17):6933-43. PubMed ID: 16903752
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NO dioxygenase activity in hemoglobins is ubiquitous in vitro, but limited by reduction in vivo.
    Smagghe BJ; Trent JT; Hargrove MS
    PLoS One; 2008 Apr; 3(4):e2039. PubMed ID: 18446211
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetics and mechanism of *NO2 reacting with various oxidation states of myoglobin.
    Goldstein S; Merenyi G; Samuni A
    J Am Chem Soc; 2004 Dec; 126(48):15694-701. PubMed ID: 15571391
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Phosphorescence quenching in evaluation of the steric interactions of heme-containing proteins].
    Fogel' VR; Likhtenshteĭn GI; Kotel'nikov AI
    Biofizika; 1984; 29(2):181-3. PubMed ID: 6326854
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitric oxide formation from hydroxylamine by myoglobin and hydrogen peroxide.
    Taira J; Misík V; Riesz P
    Biochim Biophys Acta; 1997 Oct; 1336(3):502-8. PubMed ID: 9367178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wavelength-dependent spectral changes accompany CN-hemin binding to human apohemoglobin.
    Vasudevan G; McDonald MJ
    J Protein Chem; 2000 Oct; 19(7):583-90. PubMed ID: 11233172
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduction of methemerythrin by deoxymyoglobin: a protein-protein redox reaction not involving electron-transfer proteins.
    Bradić Z; Harrington PC; Wilkins RG
    Biochemistry; 1979 Mar; 18(5):889-93. PubMed ID: 33706
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein electronic conductors: hemin-substrate bonding dictates transport mechanism and efficiency across myoglobin.
    Raichlin S; Pecht I; Sheves M; Cahen D
    Angew Chem Int Ed Engl; 2015 Oct; 54(42):12379-83. PubMed ID: 26346916
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrophobic distal pocket affects NO-heme geminate recombination dynamics in dehaloperoxidase and H64V myoglobin.
    Franzen S; Jasaitis A; Belyea J; Brewer SH; Casey R; MacFarlane AW; Stanley RJ; Vos MH; Martin JL
    J Phys Chem B; 2006 Jul; 110(29):14483-93. PubMed ID: 16854160
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct electron transfer of hemoglobin and myoglobin at the bare glassy carbon electrode in an aqueous BMI.BF4 ionic-liquid mixture.
    Loget G; Chevance S; Poriel C; Simonneaux G; Lagrost C; Rault-Berthelot J
    Chemphyschem; 2011 Feb; 12(2):411-8. PubMed ID: 21271634
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of low-density lipoprotein oxidation by hemoglobin-derived iron.
    Grinshtein N; Bamm VV; Tsemakhovich VA; Shaklai N
    Biochemistry; 2003 Jun; 42(23):6977-85. PubMed ID: 12795592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.