These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 26141882)
21. Preparation and characterization of activated carbon from hydrochar by hydrothermal carbonization of chickpea stem: an application in methylene blue removal by RSM optimization. Genli N; Kutluay S; Baytar O; Şahin Ö Int J Phytoremediation; 2022; 24(1):88-100. PubMed ID: 34024213 [TBL] [Abstract][Full Text] [Related]
22. Enhanced adsorption of chromium onto activated carbon by microwave-assisted H(3)PO(4) mixed with Fe/Al/Mn activation. Sun Y; Yue Q; Mao Y; Gao B; Gao Y; Huang L J Hazard Mater; 2014 Jan; 265():191-200. PubMed ID: 24361798 [TBL] [Abstract][Full Text] [Related]
23. One-step in-situ sustainable synthesis of magnetic carbon nanocomposite from corn comb (MCCC): agricultural biomass valorisation for pollutant abatement in wastewater. Nille OS; Patel RS; Borate BY; Babar SS; Kolekar GB; Gore AH Environ Sci Pollut Res Int; 2023 Mar; 30(13):38425-38442. PubMed ID: 36580255 [TBL] [Abstract][Full Text] [Related]
24. Mechanisms on formation of hierarchically porous carbon and its adsorption behaviors. Liu J; Hao L; Qian W; He YF; Wang RM Water Sci Technol; 2016; 74(1):266-75. PubMed ID: 27387005 [TBL] [Abstract][Full Text] [Related]
25. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Angın D; Altintig E; Köse TE Bioresour Technol; 2013 Nov; 148():542-9. PubMed ID: 24080293 [TBL] [Abstract][Full Text] [Related]
26. [Spectra study on the influence of drying process on palygorskite structure]. Huang JH; Liu YF; Jin QZ; Wang XG Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Feb; 27(2):408-10. PubMed ID: 17514988 [TBL] [Abstract][Full Text] [Related]
27. Efficient Adsorption of Methylene Blue by Porous Biochar Derived from Soybean Dreg Using a One-Pot Synthesis Method. Ying Z; Chen X; Li H; Liu X; Zhang C; Zhang J; Yi G Molecules; 2021 Jan; 26(3):. PubMed ID: 33513953 [TBL] [Abstract][Full Text] [Related]
28. FTIR spectroscopy study of the structure changes of palygorskite under heating. Yan W; Liu D; Tan D; Yuan P; Chen M Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():1052-7. PubMed ID: 22925981 [TBL] [Abstract][Full Text] [Related]
29. Synthesis of an attapulgite clay@carbon nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of toxic metal ions from water. Chen LF; Liang HW; Lu Y; Cui CH; Yu SH Langmuir; 2011 Jul; 27(14):8998-9004. PubMed ID: 21668024 [TBL] [Abstract][Full Text] [Related]
30. Removal of phosphate from aqueous solution by thermally treated natural palygorskite. Gan F; Zhou J; Wang H; Du C; Chen X Water Res; 2009 Jun; 43(11):2907-15. PubMed ID: 19447464 [TBL] [Abstract][Full Text] [Related]
31. Adsorption of isoniazid onto sepiolite-palygorskite group of clays: An IR study. Akyuz S; Akyuz T; Akalin E Spectrochim Acta A Mol Biomol Spectrosc; 2010 Apr; 75(4):1304-7. PubMed ID: 20133184 [TBL] [Abstract][Full Text] [Related]
32. Convenient synthesis of porous carbon nanospheres with tunable pore structure and excellent adsorption capacity. Chang B; Guan D; Tian Y; Yang Z; Dong X J Hazard Mater; 2013 Nov; 262():256-64. PubMed ID: 24041819 [TBL] [Abstract][Full Text] [Related]
33. Computational and experimental assessment of efficient dye adsorption method from aqueous effluents by halloysite and palygorskite clay minerals. Câmara ABF; Silva MRL; de Longe C; Moura HOMA; Silva SRB; de Souza MAF; Rodríguez-Castellón E; de Carvalho LS Environ Sci Pollut Res Int; 2024 Sep; 31(41):53671-53690. PubMed ID: 38158527 [TBL] [Abstract][Full Text] [Related]
34. The physical and surface chemical characteristics of activated carbons and the adsorption of methylene blue from wastewater. Wang S; Zhu ZH; Coomes A; Haghseresht F; Lu GQ J Colloid Interface Sci; 2005 Apr; 284(2):440-6. PubMed ID: 15780280 [TBL] [Abstract][Full Text] [Related]
35. Preparation of highly developed mesoporous activated carbon fiber from liquefied wood using wood charcoal as additive and its adsorption of methylene blue from solution. Ma X; Zhang F; Zhu J; Yu L; Liu X Bioresour Technol; 2014 Jul; 164():1-6. PubMed ID: 24814396 [TBL] [Abstract][Full Text] [Related]
36. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Chowdhury S; Balasubramanian R Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086 [TBL] [Abstract][Full Text] [Related]
37. Ammonium sulfide-assisted hydrothermal activation of palygorskite for enhanced adsorption of methyl violet. Tian G; Wang W; Kang Y; Wang A J Environ Sci (China); 2016 Mar; 41():33-43. PubMed ID: 26969048 [TBL] [Abstract][Full Text] [Related]
38. Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. Hameed BH; Din AT; Ahmad AL J Hazard Mater; 2007 Mar; 141(3):819-25. PubMed ID: 16956720 [TBL] [Abstract][Full Text] [Related]
39. Activated carbon from Eucalyptus camaldulensis Dehn bark using phosphoric acid activation. Patnukao P; Pavasant P Bioresour Technol; 2008 Nov; 99(17):8540-3. PubMed ID: 18455392 [TBL] [Abstract][Full Text] [Related]
40. Removal of methylene blue from aqueous solution by wood millet carbon optimization using response surface methodology. Ghaedi M; Nasiri Kokhdan S Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():141-8. PubMed ID: 25315868 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]