BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26141893)

  • 1. Biological removal of antiandrogenic activity in gray wastewater and coking wastewater by membrane reactor process.
    Ma D; Chen L; Liu C; Bao C; Liu R
    J Environ Sci (China); 2015 Jul; 33():195-202. PubMed ID: 26141893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decrease of antiandrogenic activity in gray water and domestic wastewater treated by the MBR process.
    Ma D; Chen L; Lui R
    Environ Sci Process Impacts; 2013 Mar; 15(3):668-76. PubMed ID: 23738366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the removal of antiestrogens and antiandrogens via ozone and granular activated carbon using bioassay and fluorescent spectroscopy.
    Ma D; Chen L; Wu Y; Liu R
    Chemosphere; 2016 Jun; 153():346-55. PubMed ID: 27027562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Coking Wastewater Treatment Efficiency and Comparison of Acute Toxicity Characteristics of the AnMBR-A-MBR and A
    Zhu JD; Li FF; Chen LJ
    Huan Jing Ke Xue; 2017 Oct; 38(10):4293-4301. PubMed ID: 29965214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute toxicity and chemical evaluation of coking wastewater under biological and advanced physicochemical treatment processes.
    Dehua M; Cong L; Xiaobiao Z; Rui L; Lujun C
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18343-52. PubMed ID: 27278071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid peroxymonosulfate/activated carbon fiber-sequencing batch reactor system for efficient treatment of coking wastewater: Establishment and influential factors.
    Su B; Zhang W; Sun F; Quan X
    Bioresour Technol; 2024 Aug; 405():130907. PubMed ID: 38810707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced treatment performance of coking wastewater and reduced membrane fouling using a novel EMBR.
    Jiang B; Du C; Shi S; Tan L; Li M; Liu J; Xue L; Ji X
    Bioresour Technol; 2017 Apr; 229():39-45. PubMed ID: 28107720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of a novel up-flow electrocatalytic hydrolysis acidification reactor (UEHAR) coupled with anoxic/oxic system for treating coking wastewater.
    Dong J; Chen Z; Han F; Hu D; Ge H; Jiang B; Yan J; Zhuang S; Wang Y; Cui S; Liang Z
    Water Res; 2024 Jun; 257():121670. PubMed ID: 38723347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pilot-scale three-dimensional electrochemical reactor combined with anaerobic-anoxic-oxic system for advanced treatment of coking wastewater.
    Liu Y; Wu ZY; Peng P; Xie HB; Li XY; Xu J; Li WH
    J Environ Manage; 2020 Mar; 258():110021. PubMed ID: 31929062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced treatment of biologically pretreated coking wastewater by a bipolar three-dimensional electrode reactor.
    Zhang C; Lin H; Chen J; Zhang W
    Environ Technol; 2013; 34(13-16):2371-6. PubMed ID: 24350493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic pollution removal from coke plant wastewater using coking coal.
    Gao L; Li S; Wang Y; Sun H
    Water Sci Technol; 2015; 72(1):158-63. PubMed ID: 26114284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioaugmentation with isolated strains for the removal of toxic and refractory organics from coking wastewater in a membrane bioreactor.
    Zhu X; Liu R; Liu C; Chen L
    Biodegradation; 2015 Nov; 26(6):465-74. PubMed ID: 26510738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison between UV and VUV photolysis for the pre- and post-treatment of coking wastewater.
    Xing R; Zheng Z; Wen D
    J Environ Sci (China); 2015 Mar; 29():45-50. PubMed ID: 25766012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of novel antiandrogens identified in biological effluents of domestic wastewater by activated carbon.
    Ma D; Chen L; Liu R
    Sci Total Environ; 2017 Oct; 595():702-710. PubMed ID: 28407587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-treatment of coking industry wastewater by the electro-Fenton process.
    Güçlü D; Sahinkaya S; Sirin N
    Water Environ Res; 2013 May; 85(5):391-6. PubMed ID: 23789568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution, partition and removal of polycyclic aromatic hydrocarbons (PAHs) during coking wastewater treatment processes.
    Zhang W; Wei C; An G
    Environ Sci Process Impacts; 2015 May; 17(5):975-84. PubMed ID: 25865172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pretreatment of coking wastewater using anaerobic sequencing batch reactor (ASBR).
    Li B; Sun YL; Li YY
    J Zhejiang Univ Sci B; 2005 Nov; 6(11):1115-23. PubMed ID: 16252347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estrogenic activity and identification of potential xenoestrogens in a coking wastewater treatment plant.
    Zhao JL; Chen XW; Yan B; Wei C; Jiang YX; Ying GG
    Ecotoxicol Environ Saf; 2015 Feb; 112():238-46. PubMed ID: 25463876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term evaluating the strengthening effects of iron-carbon mediator for coking wastewater treatment in EGSB reactor.
    Liu Y; Zhang Z; Song Y; Peng F; Feng Y
    J Hazard Mater; 2024 Aug; 474():134701. PubMed ID: 38824774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal and fate of polycyclic aromatic hydrocarbons in a hybrid anaerobic-anoxic-oxic process for highly toxic coke wastewater treatment.
    Zhao W; Sui Q; Huang X
    Sci Total Environ; 2018 Sep; 635():716-724. PubMed ID: 29680762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.