BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26141893)

  • 41. Correlating bacterial and archaeal community with efficiency of a coking wastewater treatment plant employing anaerobic-anoxic-oxic process in coal industry.
    Ban Q; Zhang L; Li J
    Chemosphere; 2022 Jan; 286(Pt 2):131724. PubMed ID: 34388873
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The assessment of the coke wastewater treatment efficacy in rotating biological contractor.
    Cema G; Żabczyński S; Ziembińska-Buczyńska A
    Water Sci Technol; 2016; 73(5):1202-10. PubMed ID: 26942544
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Removal of hard COD from biological effluent of coking wastewater using synchronized oxidation-adsorption technology: Performance, mechanism, and full-scale application.
    Sun G; Zhang Y; Gao Y; Han X; Yang M
    Water Res; 2020 Apr; 173():115517. PubMed ID: 32028246
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis of organic compounds' degradation and electricity generation in anaerobic fluidized bed microbial fuel cell for coking wastewater treatment.
    Liu X; Wu J; Guo Q
    Environ Technol; 2017 Dec; 38(24):3115-3121. PubMed ID: 28278780
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Performance and fate of organics in a pilot MBR-NF for treating antibiotic production wastewater with recycling NF concentrate.
    Wang J; Li K; Wei Y; Cheng Y; Wei D; Li M
    Chemosphere; 2015 Feb; 121():92-100. PubMed ID: 25475971
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Organics and nitrogen removal from textile auxiliaries wastewater with A2O-MBR in a pilot-scale.
    Sun F; Sun B; Hu J; He Y; Wu W
    J Hazard Mater; 2015 Apr; 286():416-24. PubMed ID: 25603291
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synergistic effect of the presence of suspended and dissolved matter on the removal of cyanide from coking wastewater by TiO
    Pueyo N; Miguel N; Mosteo R; Ovelleiro JL; Ormad MP
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jan; 52(2):182-188. PubMed ID: 27791477
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The occurrence and fate of phenolic compounds in a coking wastewater treatment plant.
    Zhang W; Wei C; Feng C; Ren Y; Hu Y; Yan B; Wu C
    Water Sci Technol; 2013; 68(2):433-40. PubMed ID: 23863439
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Operation of a modified anaerobic baffled reactor coupled with a membrane bioreactor for the treatment of municipal wastewater in Taiwan.
    Sung HN; Katsou E; Statiris E; Anguilano L; Malamis S
    Environ Technol; 2019 Apr; 40(10):1233-1238. PubMed ID: 29307278
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biodegradation characterization and immobilized strains' potential for quinoline degradation by Brevundimonas sp. K4 isolated from activated sludge of coking wastewater.
    Wang C; Zhang M; Cheng F; Geng Q
    Biosci Biotechnol Biochem; 2015; 79(1):164-70. PubMed ID: 25175484
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigation into the nitrate removal efficiency and microbial communities in a sequencing batch reactor treating reverse osmosis concentrate produced by a coking wastewater treatment plant.
    Li E; Wang R; Jin X; Lu S; Qiu Z; Zhang X
    Environ Technol; 2018 Sep; 39(17):2203-2214. PubMed ID: 28683691
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced removal of nitrate and refractory organic pollutants from bio-treated coking wastewater using corncobs as carbon sources and biofilm carriers.
    Sun G; Wan J; Sun Y; Li H; Chang C; Wang Y
    Chemosphere; 2019 Dec; 237():124520. PubMed ID: 31404739
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Combination of Coagulation and Ozone Catalytic Oxidation for Pretreating Coking Wastewater.
    Chen L; Xu Y; Sun Y
    Int J Environ Res Public Health; 2019 May; 16(10):. PubMed ID: 31096662
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Design and startup of a membrane-biological-reactor system at a Ford-engine plant for treating oily wastewater.
    Kim BR; Anderson JE; Mueller SA; Gaines WA; Szafranski MJ; Bremmer AL; Yarema GJ; Guciardo CD; Linden S; Doherty TE
    Water Environ Res; 2006 Apr; 78(4):362-71. PubMed ID: 16749304
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Membrane bioreactors for municipal wastewater treatment - a viable option to reduce the amount of polar pollutants discharged into surface waters?
    Weiss S; Reemtsma T
    Water Res; 2008 Aug; 42(14):3837-47. PubMed ID: 18684484
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biotoxicity evaluation of coking wastewater treated with different technologies using Japanese medaka (Oryzias latipes).
    Zhu X; Chen L; Liu R; Liu C; Pan Z
    Environ Sci Process Impacts; 2013 Jul; 15(7):1391-6. PubMed ID: 23702512
    [TBL] [Abstract][Full Text] [Related]  

  • 57. MBR/RO/ozone processes for TFT-LCD industrial wastewater treatment and recycling.
    Chen TK; Ni CH; Chan YC; Lu MC
    Water Sci Technol; 2005; 51(6-7):411-9. PubMed ID: 16004003
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Treatment of coking wastewater in biofilm-based bioaugmentation process: Biofilm formation and microbial community analysis.
    Yuan K; Li S; Zhong F
    J Hazard Mater; 2020 Dec; 400():123117. PubMed ID: 32574876
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of the detoxification efficiencies of coking wastewater treated by combined anaerobic-anoxic-oxic (A
    Na C; Zhang Y; Quan X; Chen S; Liu W; Zhang Y
    J Hazard Mater; 2017 Sep; 338():186-193. PubMed ID: 28554110
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.