These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26141894)

  • 21. Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants.
    Pii Y; Penn A; Terzano R; Crecchio C; Mimmo T; Cesco S
    Plant Physiol Biochem; 2015 Feb; 87():45-52. PubMed ID: 25544744
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance.
    Naseem H; Ahsan M; Shahid MA; Khan N
    J Basic Microbiol; 2018 Dec; 58(12):1009-1022. PubMed ID: 30183106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Day and blue light modify growth, cell physiology and indole-3-acetic acid production of Azospirillum brasilense Az39 under planktonic growth conditions.
    Molina R; López G; Coniglio A; Furlan A; Mora V; Rosas S; Cassán F
    J Appl Microbiol; 2021 May; 130(5):1671-1683. PubMed ID: 32979295
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of heavy metals on plant-associated rhizobacteria: comparison of endophytic and non-endophytic strains of Azospirillum brasilense.
    Kamnev AA; Tugarova AV; Antonyuk LP; Tarantilis PA; Polissiou MG; Gardiner PH
    J Trace Elem Med Biol; 2005; 19(1):91-5. PubMed ID: 16240678
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbiological quality analysis of inoculants based on Bradyrhizobium spp. and Azospirillum brasilense produced "on farm" reveals high contamination with non-target microorganisms.
    Bocatti CR; Ferreira E; Ribeiro RA; de Oliveira Chueire LM; Delamuta JRM; Kobayashi RKT; Hungria M; Nogueira MA
    Braz J Microbiol; 2022 Mar; 53(1):267-280. PubMed ID: 34984661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arsenic accumulation and distribution in relation to young seedling growth in Atriplex atacamensis Phil.
    Vromman D; Flores-Bavestrello A; Šlejkovec Z; Lapaille S; Teixeira-Cardoso C; Briceño M; Kumar M; Martínez JP; Lutts S
    Sci Total Environ; 2011 Dec; 412-413():286-95. PubMed ID: 22051550
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effective rhizoinoculation and biofilm formation by arsenic immobilizing halophilic plant growth promoting bacteria (PGPB) isolated from mangrove rhizosphere: A step towards arsenic rhizoremediation.
    Mallick I; Bhattacharyya C; Mukherji S; Dey D; Sarkar SC; Mukhopadhyay UK; Ghosh A
    Sci Total Environ; 2018 Jan; 610-611():1239-1250. PubMed ID: 28851144
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combined effects of clay immobilized Azospirillum brasilense and Pantoea dispersa and organic olive residue on plant performance and soil properties in the revegetation of a semiarid area.
    Schoebitz M; Mengual C; Roldán A
    Sci Total Environ; 2014 Jan; 466-467():67-73. PubMed ID: 23895777
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface colonization by Azospirillum brasilense SM in the indole-3-acetic acid dependent growth improvement of sorghum.
    Kochar M; Srivastava S
    J Basic Microbiol; 2012 Apr; 52(2):123-31. PubMed ID: 21656820
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Azospirillum brasilense inoculation counteracts the induction of nitrate uptake in maize plants.
    Pii Y; Aldrighetti A; Valentinuzzi F; Mimmo T; Cesco S
    J Exp Bot; 2019 Feb; 70(4):1313-1324. PubMed ID: 30715422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidative and antioxidative responses in the wheat-Azospirillum brasilense interaction.
    Méndez-Gómez M; Castro-Mercado E; Alexandre G; García-Pineda E
    Protoplasma; 2016 Mar; 253(2):477-86. PubMed ID: 25952083
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving soybean growth under arsenic stress by inoculation with native arsenic-resistant bacteria.
    Wevar Oller AL; Regis S; Armendariz AL; Talano MA; Agostini E
    Plant Physiol Biochem; 2020 Oct; 155():85-92. PubMed ID: 32745933
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Maize Inoculation with
    Oliveira ALM; Santos OJAP; Marcelino PRF; Milani KML; Zuluaga MYA; Zucareli C; Gonçalves LSA
    Front Microbiol; 2017; 8():1873. PubMed ID: 29018432
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants.
    Rodríguez-Salazar J; Suárez R; Caballero-Mellado J; Iturriaga G
    FEMS Microbiol Lett; 2009 Jul; 296(1):52-9. PubMed ID: 19459961
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Denitrification-derived nitric oxide modulates biofilm formation in Azospirillum brasilense.
    Arruebarrena Di Palma A; Pereyra CM; Moreno Ramirez L; Xiqui Vázquez ML; Baca BE; Pereyra MA; Lamattina L; Creus CM
    FEMS Microbiol Lett; 2013 Jan; 338(1):77-85. PubMed ID: 23082946
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polar flagellum of the alphaproteobacterium Azospirillum brasilense Sp245 plays a role in biofilm biomass accumulation and in biofilm maintenance under stationary and dynamic conditions.
    Shelud'ko AV; Filip'echeva YA; Telesheva EM; Yevstigneeva SS; Petrova LP; Katsy EI
    World J Microbiol Biotechnol; 2019 Jan; 35(2):19. PubMed ID: 30656428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Growth and mineral acquisition response of grapevine rootstocks (Vitis spp.) to inoculation with different strains of plant growth-promoting rhizobacteria (PGPR).
    Sabir A; Yazici MA; Kara Z; Sahin F
    J Sci Food Agric; 2012 Aug; 92(10):2148-53. PubMed ID: 22307541
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of growth and motility in non-photosynthetic Azospirillum brasilense exposed to red, blue, and white light.
    Romina M; Gastón L; Belén R; Susana R; Verónica M; Fabricio C
    Arch Microbiol; 2020 Jul; 202(5):1193-1201. PubMed ID: 32078698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bradyrhizobium sp. enhance ureide metabolism increasing peanuts yield.
    Gericó TG; Tavanti RFR; de Oliveira SC; Lourenzani AEBS; de Lima JP; Ribeiro RP; Dos Santos LCC; Dos Reis AR
    Arch Microbiol; 2020 Apr; 202(3):645-656. PubMed ID: 31776586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth.
    Molina-Romero D; Baez A; Quintero-Hernández V; Castañeda-Lucio M; Fuentes-Ramírez LE; Bustillos-Cristales MDR; Rodríguez-Andrade O; Morales-García YE; Munive A; Muñoz-Rojas J
    PLoS One; 2017; 12(11):e0187913. PubMed ID: 29117218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.