BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 26141994)

  • 1. Spectral analysis of cooling induced hemodynamic perturbations indicates involvement of sympathetic activation and nitric oxide production in rats.
    Liu YP; Lin YH; Chen YC; Lee PL; Tung CS
    Life Sci; 2015 Sep; 136():19-27. PubMed ID: 26141994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral analysis of cardiovascular oscillations in the 7-day regimen of losartan administration with and without cold stress.
    Liu YP; Lin YC; Lin CC; Tsai SH; Tung CS
    Chin J Physiol; 2022; 65(4):171-178. PubMed ID: 36073565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of sinoaortic denervation on hemodynamic perturbations of prolonged paradoxical sleep deprivation and rapid cold stress in rats.
    Liu YP; Lin CC; Lin YC; Tsai SH; Tung CS
    J Integr Neurosci; 2022 Apr; 21(3):75. PubMed ID: 35633156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Efferent Sympathoadrenal Effects in Cooling-Induced Hemodynamic Perturbations in Rats: An Investigation by Spectrum Analysis.
    Liu YP; Lin YH; Lin CC; Lin YC; Chen YC; Lee PL; Tung CS
    Chin J Physiol; 2015 Oct; 58(5):312-21. PubMed ID: 26387655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects of sympatholytic agents on the power spectrum of rats during the cooling-induced hemodynamic perturbations.
    Yang YN; Tsai HL; Lin YC; Liu YP; Tung CS
    Chin J Physiol; 2019; 62(2):86-92. PubMed ID: 31243179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Portal vein innervation underlying the pressor effect of water ingestion with and without cold stress.
    Tsai SH; Lin JY; Lin YC; Liu YP; Tung CS
    Chin J Physiol; 2020; 63(2):53-59. PubMed ID: 32341230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the role of endogenous nitric oxide in myogenic vascular oscillations during cooling-evoked hemodynamic perturbations of rats.
    Lin YH; Liu YP; Lin YC; Lee PL; Tung CS
    Can J Physiol Pharmacol; 2017 Jul; 95(7):803-810. PubMed ID: 28278384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of vasopressin V1 antagonist in the action of vasopressin on the cooling-evoked hemodynamic perturbations of rats.
    Yang YN; Tsai HL; Lin YC; Liu YP; Tung CS
    Neuropeptides; 2019 Aug; 76():101939. PubMed ID: 31253439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of prolonged paradoxical sleep deprivation with or without acute cold stress on hemodynamic perturbations in rats.
    Yang YN; Liu YP; Hsieh MT; Lin YC; Tung CS
    Stress; 2018 Nov; 21(6):520-527. PubMed ID: 29939104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiac autonomic function in acutely nitric oxide deficient hypertensive rats: role of the sympathetic nervous system and oxidative stress.
    Chaswal M; Das S; Prasad J; Katyal A; Fahim M
    Can J Physiol Pharmacol; 2011 Dec; 89(12):865-74. PubMed ID: 22115075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooling-evoked hemodynamic perturbations facilitate sympathetic activity with subsequent myogenic vascular oscillations via alpha2-adrenergic receptors.
    Lin YH; Liu YP; Lin YC; Lee PL; Tung CS
    Physiol Res; 2017 Jul; 66(3):449-457. PubMed ID: 28248541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heart rate and blood pressure power spectral analysis during calcium channel blocker induced hypotension.
    Kimura T; Ito M; Komatsu T; Nishiwaki K; Shimada Y
    Can J Anaesth; 1999 Dec; 46(12):1110-6. PubMed ID: 10608202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of N omega-monomethyl-L-arginine on short-term RR interval and systolic blood pressure oscillations.
    Cordero JJ; González J; Feria M
    J Cardiovasc Pharmacol; 1994 Aug; 24(2):323-7. PubMed ID: 7526068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Very low-frequency blood pressure variability depends on voltage-gated L-type Ca2+ channels in conscious rats.
    Langager AM; Hammerberg BE; Rotella DL; Stauss HM
    Am J Physiol Heart Circ Physiol; 2007 Mar; 292(3):H1321-7. PubMed ID: 17056668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pressor response to pulsatile compression of the rostral ventrolateral medulla mediated by nitric oxide and c-fos expression.
    Morimoto S; Sasaki S; Miki S; Kawa T; Itoh H; Nakata T; Takeda K; Nakagawa M
    Br J Pharmacol; 2000 Mar; 129(5):859-64. PubMed ID: 10696082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide inhibition in paraventricular nucleus on cardiovascular and autonomic modulation after exercise training in unanesthetized rats.
    Mastelari RB; de Souza HC; Lenhard A; de Aguiar Corrêa FM; Martins-Pinge MC
    Brain Res; 2011 Feb; 1375():68-76. PubMed ID: 21172321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional integrity of the central and sympathetic nervous systems is a prerequisite for pressor and tachycardic effects of diphenyleneiodonium, a novel inhibitor of nitric oxide synthase.
    Wang YX; Pang CC
    J Pharmacol Exp Ther; 1993 Apr; 265(1):263-72. PubMed ID: 7682612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of blood pressure control mechanisms by power spectral analysis.
    Stauss HM
    Clin Exp Pharmacol Physiol; 2007 Apr; 34(4):362-8. PubMed ID: 17324151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of inducible nitric oxide synthase in rostral ventrolateral medulla causes hypertension and sympathoexcitation via an increase in oxidative stress.
    Kimura Y; Hirooka Y; Sagara Y; Ito K; Kishi T; Shimokawa H; Takeshita A; Sunagawa K
    Circ Res; 2005 Feb; 96(2):252-60. PubMed ID: 15591232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Role of sympathetic nervous system on blood pressure and heart rate variabilities in the rat: spectral analysis].
    Cerutti C; Lo M; Julien C; Paultre CZ; Vincent M; Sassard J
    Arch Mal Coeur Vaiss; 1991 Aug; 84(8):1235-8. PubMed ID: 1953274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.