BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 26142218)

  • 1. High-order tracking differentiator based adaptive neural control of a flexible air-breathing hypersonic vehicle subject to actuators constraints.
    Bu X; Wu X; Tian M; Huang J; Zhang R; Ma Z
    ISA Trans; 2015 Sep; 58():237-47. PubMed ID: 26142218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel prescribed performance neural control of a flexible air-breathing hypersonic vehicle with unknown initial errors.
    Bu X; Wu X; Zhu F; Huang J; Ma Z; Zhang R
    ISA Trans; 2015 Nov; 59():149-59. PubMed ID: 26456727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous high order sliding mode controller design for a flexible air-breathing hypersonic vehicle.
    Wang J; Zong Q; Su R; Tian B
    ISA Trans; 2014 May; 53(3):690-8. PubMed ID: 24534328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracking control of air-breathing hypersonic vehicles with non-affine dynamics via improved neural back-stepping design.
    Bu X; He G; Wang K
    ISA Trans; 2018 Apr; 75():88-100. PubMed ID: 29458972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global neural dynamic surface tracking control of strict-feedback systems with application to hypersonic flight vehicle.
    Xu B; Yang C; Pan Y
    IEEE Trans Neural Netw Learn Syst; 2015 Oct; 26(10):2563-75. PubMed ID: 26259222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks.
    Zou AM; Dev Kumar K; Hou ZG
    IEEE Trans Neural Netw; 2010 Sep; 21(9):1457-71. PubMed ID: 20729168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems.
    Li TS; Wang D; Feng G; Tong SC
    IEEE Trans Syst Man Cybern B Cybern; 2010 Jun; 40(3):915-27. PubMed ID: 19887321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural adaptive control of air-breathing hypersonic vehicles robust to actuator dynamics.
    An H; Guo Z; Wang G; Wang C
    ISA Trans; 2021 Oct; 116():17-29. PubMed ID: 33509597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel anti-saturation robust controller for flexible air-breathing hypersonic vehicle with actuator constraints.
    Ding Y; Wang X; Bai Y; Cui N
    ISA Trans; 2020 Apr; 99():95-109. PubMed ID: 31537391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust/optimal temperature profile control of a high-speed aerospace vehicle using neural networks.
    Yadav V; Padhi R; Balakrishnan SN
    IEEE Trans Neural Netw; 2007 Jul; 18(4):1115-28. PubMed ID: 17668665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive output feedback control of flexible-joint robots using neural networks: dynamic surface design approach.
    Yoo SJ; Park JB; Choi YH
    IEEE Trans Neural Netw; 2008 Oct; 19(10):1712-26. PubMed ID: 18842476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Air-Breathing Hypersonic Vehicle Tracking Control Based on Adaptive Dynamic Programming.
    Mu C; Ni Z; Sun C; He H
    IEEE Trans Neural Netw Learn Syst; 2017 Mar; 28(3):584-598. PubMed ID: 26863677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constrained motion control of flexible robot manipulators based on recurrent neural networks.
    Tian L; Wang J; Mao Z
    IEEE Trans Syst Man Cybern B Cybern; 2004 Jun; 34(3):1541-52. PubMed ID: 15484923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive neural control for a class of perturbed strict-feedback nonlinear time-delay systems.
    Wang M; Chen B; Shi P
    IEEE Trans Syst Man Cybern B Cybern; 2008 Jun; 38(3):721-30. PubMed ID: 18558537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-time controller design with adaptive fixed-time anti-saturation compensator for hypersonic vehicle.
    Ding Y; Yue X; Liu C; Dai H; Chen G
    ISA Trans; 2022 Mar; 122():96-113. PubMed ID: 33965201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active disturbance rejection based trajectory linearization control for hypersonic reentry vehicle with bounded uncertainties.
    Shao X; Wang H
    ISA Trans; 2015 Jan; 54():27-38. PubMed ID: 25082266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive control of uncertain nonaffine nonlinear systems with input saturation using neural networks.
    Esfandiari K; Abdollahi F; Talebi HA
    IEEE Trans Neural Netw Learn Syst; 2015 Oct; 26(10):2311-22. PubMed ID: 25532213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intelligent robust tracking control for a class of uncertain strict-feedback nonlinear systems.
    Chang YC
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):142-55. PubMed ID: 19150764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fuzzy-approximation-based prescribed performance control of air-breathing hypersonic vehicles with input constraints.
    Li X; Li G; Zhao Y; Kang X
    Sci Prog; 2020; 103(1):36850419877359. PubMed ID: 31829862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural-network-based decentralized adaptive control for a class of large-scale nonlinear systems with unknown time-varying delays.
    Yoo SJ; Park JB
    IEEE Trans Syst Man Cybern B Cybern; 2009 Oct; 39(5):1316-23. PubMed ID: 19342350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.