BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26142275)

  • 1. Striatal and thalamic GABA level concentrations play differential roles for the modulation of response selection processes by proprioceptive information.
    Dharmadhikari S; Ma R; Yeh CL; Stock AK; Snyder S; Zauber SE; Dydak U; Beste C
    Neuroimage; 2015 Oct; 120():36-42. PubMed ID: 26142275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Parkinson's disease and dopaminergic medication on proprioceptive processing.
    Mongeon D; Blanchet P; Messier J
    Neuroscience; 2009 Jan; 158(2):426-40. PubMed ID: 18996173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interrelation of resting state functional connectivity, striatal GABA levels, and cognitive control processes.
    Haag L; Quetscher C; Dharmadhikari S; Dydak U; Schmidt-Wilcke T; Beste C
    Hum Brain Mapp; 2015 Nov; 36(11):4383-93. PubMed ID: 26354091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association of exposure to manganese and iron with striatal and thalamic GABA and other neurometabolites - Neuroimaging results from the WELDOX II study.
    Casjens S; Dydak U; Dharmadhikari S; Lotz A; Lehnert M; Quetscher C; Stewig C; Glaubitz B; Schmidt-Wilcke T; Edmondson D; Yeh CL; Weiss T; Thriel CV; Herrmann L; Muhlack S; Woitalla D; Aschner M; Brüning T; Pesch B
    Neurotoxicology; 2018 Jan; 64():60-67. PubMed ID: 28803850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the functional role of striatal and anterior cingulate GABA+ in stimulus-response binding.
    Takacs A; Stock AK; Kuntke P; Werner A; Beste C
    Hum Brain Mapp; 2021 Apr; 42(6):1863-1878. PubMed ID: 33421290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversal of alcohol-induced effects on response control due to changes in proprioceptive information processing.
    Stock AK; Mückschel M; Beste C
    Addict Biol; 2017 Jan; 22(1):246-256. PubMed ID: 26358755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An evaluation of sensorimotor integration during locomotion toward a target in Parkinson's disease.
    Almeida QJ; Frank JS; Roy EA; Jenkins ME; Spaulding S; Patla AE; Jog MS
    Neuroscience; 2005; 134(1):283-93. PubMed ID: 15950389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abnormal proprioceptive-motor integration contributes to hypometric postural responses of subjects with Parkinson's disease.
    Jacobs JV; Horak FB
    Neuroscience; 2006 Aug; 141(2):999-1009. PubMed ID: 16713110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential progression of proprioceptive and visual information processing deficits in Parkinson's disease.
    Keijsers NL; Admiraal MA; Cools AR; Bloem BR; Gielen CC
    Eur J Neurosci; 2005 Jan; 21(1):239-48. PubMed ID: 15654861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visuomotor learning in immersive 3D virtual reality in Parkinson's disease and in aging.
    Messier J; Adamovich S; Jack D; Hening W; Sage J; Poizner H
    Exp Brain Res; 2007 May; 179(3):457-74. PubMed ID: 17146644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GABAergic changes in the thalamocortical circuit in Parkinson's disease.
    van Nuland AJM; den Ouden HEM; Zach H; Dirkx MFM; van Asten JJA; Scheenen TWJ; Toni I; Cools R; Helmich RC
    Hum Brain Mapp; 2020 Mar; 41(4):1017-1029. PubMed ID: 31721369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tactile/proprioceptive integration during arm localization is intact in individuals with Parkinson's disease.
    Rabin E; Muratori L; Svokos K; Gordon A
    Neurosci Lett; 2010 Feb; 470(1):38-42. PubMed ID: 20036715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Striatal GABA-MRS predicts response inhibition performance and its cortical electrophysiological correlates.
    Quetscher C; Yildiz A; Dharmadhikari S; Glaubitz B; Schmidt-Wilcke T; Dydak U; Beste C
    Brain Struct Funct; 2015 Nov; 220(6):3555-64. PubMed ID: 25156575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thalamic GABA may modulate cognitive control in restless legs syndrome.
    Zhang R; Werner A; Hermann W; Brandt MD; Beste C; Stock AK
    Neurosci Lett; 2019 Nov; 712():134494. PubMed ID: 31520647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cortical cholinergic system contributes to the top-down control of distraction: Evidence from patients with Parkinson's disease.
    Kim K; Müller MLTM; Bohnen NI; Sarter M; Lustig C
    Neuroimage; 2019 Apr; 190():107-117. PubMed ID: 29277400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proprioception and motor control in Parkinson's disease.
    Konczak J; Corcos DM; Horak F; Poizner H; Shapiro M; Tuite P; Volkmann J; Maschke M
    J Mot Behav; 2009 Nov; 41(6):543-52. PubMed ID: 19592360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of proprioceptive training on multisensory perception under visual uncertainty.
    Saidi M; Towhidkhah F; Lagzi F; Gharibzadeh S
    J Integr Neurosci; 2012 Dec; 11(4):401-15. PubMed ID: 23351049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frontal and thalamic changes of GABA concentration indicate dysfunction of thalamofrontal networks in juvenile myoclonic epilepsy.
    Hattingen E; Lückerath C; Pellikan S; Vronski D; Roth C; Knake S; Kieslich M; Pilatus U
    Epilepsia; 2014 Jul; 55(7):1030-7. PubMed ID: 24902613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presbypropria: the effects of physiological ageing on proprioceptive control.
    Boisgontier MP; Olivier I; Chenu O; Nougier V
    Age (Dordr); 2012 Oct; 34(5):1179-94. PubMed ID: 21850402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proprioceptive impairment and postural orientation control in Parkinson's disease.
    Vaugoyeau M; Hakam H; Azulay JP
    Hum Mov Sci; 2011 Apr; 30(2):405-14. PubMed ID: 21419506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.