These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 2614259)
1. Differences in the metabolism of oxidatively modified low density lipoprotein and acetylated low density lipoprotein by human endothelial cells: inhibition of cholesterol esterification by oxidatively modified low density lipoprotein. Jialal I; Chait A J Lipid Res; 1989 Oct; 30(10):1561-8. PubMed ID: 2614259 [TBL] [Abstract][Full Text] [Related]
2. Oxidized low density lipoprotein leads to macrophage accumulation of unesterified cholesterol as a result of lysosomal trapping of the lipoprotein hydrolyzed cholesteryl ester. Maor I; Aviram M J Lipid Res; 1994 May; 35(5):803-19. PubMed ID: 8071603 [TBL] [Abstract][Full Text] [Related]
3. Oxidized LDL increase free cholesterol and fail to stimulate cholesterol esterification in murine macrophages. Roma P; Catapano AL; Bertulli SM; Varesi L; Fumagalli R; Bernini F Biochem Biophys Res Commun; 1990 Aug; 171(1):123-31. PubMed ID: 2393386 [TBL] [Abstract][Full Text] [Related]
4. Different fate in vivo of oxidatively modified low density lipoprotein and acetylated low density lipoprotein in rats. Recognition by various scavenger receptors on Kupffer and endothelial liver cells. Van Berkel TJ; De Rijke YB; Kruijt JK J Biol Chem; 1991 Feb; 266(4):2282-9. PubMed ID: 1989982 [TBL] [Abstract][Full Text] [Related]
5. Macrophage uptake of oxidized LDL inhibits lysosomal sphingomyelinase, thus causing the accumulation of unesterified cholesterol-sphingomyelin-rich particles in the lysosomes. A possible role for 7-Ketocholesterol. Maor I; Mandel H; Aviram M Arterioscler Thromb Vasc Biol; 1995 Sep; 15(9):1378-87. PubMed ID: 7670952 [TBL] [Abstract][Full Text] [Related]
6. Reconstituted high density lipoprotein reduces the capacity of oxidatively modified low density lipoprotein to accumulate cholesteryl esters in mouse peritoneal macrophages. Sakai M; Miyazaki A; Hakamata H; Suginohara Y; Sakamoto YI; Morikawa W; Kobori S; Schichiri M; Horiuchi S Atherosclerosis; 1996 Jan; 119(2):191-202. PubMed ID: 8808496 [TBL] [Abstract][Full Text] [Related]
7. Low density lipoprotein modification by cholesterol oxidase induces enhanced uptake and cholesterol accumulation in cells. Aviram M J Biol Chem; 1992 Jan; 267(1):218-25. PubMed ID: 1730591 [TBL] [Abstract][Full Text] [Related]
8. Cholesterol efflux from cells enriched with cholesteryl esters by incubation with hypercholesterolemic monkey low density lipoprotein. St Clair RW; Leight MA J Lipid Res; 1983 Feb; 24(2):183-91. PubMed ID: 6833894 [TBL] [Abstract][Full Text] [Related]
9. Involvement of the macrophage low density lipoprotein receptor-binding domains in the uptake of oxidized low density lipoprotein. Keidar S; Brook GJ; Rosenblat M; Fuhrman B; Dankner G; Aviram M Arterioscler Thromb; 1992 Apr; 12(4):484-93. PubMed ID: 1373074 [TBL] [Abstract][Full Text] [Related]
10. Metabolism of modified LDL by cultured human placental cells. Bonet B; Chait A; Gown AM; Knopp RH Atherosclerosis; 1995 Jan; 112(2):125-36. PubMed ID: 7772073 [TBL] [Abstract][Full Text] [Related]
11. Receptors for modified low-density lipoproteins on human endothelial cells: different recognition for acetylated low-density lipoprotein and oxidized low-density lipoprotein. Kume N; Arai H; Kawai C; Kita T Biochim Biophys Acta; 1991 Jan; 1091(1):63-7. PubMed ID: 1995068 [TBL] [Abstract][Full Text] [Related]
12. Effects of oxidatively modified LDL on cholesterol esterification in cultured macrophages. Zhang HF; Basra HJ; Steinbrecher UP J Lipid Res; 1990 Aug; 31(8):1361-9. PubMed ID: 2280179 [TBL] [Abstract][Full Text] [Related]
13. Enhanced uptake and impaired intracellular metabolism of low density lipoprotein complexed with anti-low density lipoprotein antibodies. Lopes-Virella MF; Griffith RL; Shunk KA; Virella GT Arterioscler Thromb; 1991; 11(5):1356-67. PubMed ID: 1911721 [TBL] [Abstract][Full Text] [Related]
14. Macrophage-conditioned medium and beta-VLDLs enhance cholesterol esterification in SMCs and HSFs by LDL receptor-mediated and other pathways. Stein O; Dabach Y; Ben-Naim M; Hollander G; Stein Y Arterioscler Thromb; 1993 Sep; 13(9):1350-8. PubMed ID: 8364019 [TBL] [Abstract][Full Text] [Related]
15. beta-VLDL and acetylated-LDL binding to pigeon monocyte macrophages. Henson DA; St Clair RW; Lewis JC Atherosclerosis; 1989 Jul; 78(1):47-60. PubMed ID: 2667527 [TBL] [Abstract][Full Text] [Related]
16. Interaction between macrophages and aortic smooth muscle cells. Enhancement of cholesterol esterification in smooth muscle cells by media of macrophages incubated with acetylated LDL. Stein O; Halperin G; Stein Y Biochim Biophys Acta; 1981 Sep; 665(3):477-90. PubMed ID: 7295747 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the interaction of acetylated LDL and oxidatively modified LDL with human liver parenchymal and Kupffer cells in culture. Kamps JA; Kruijt JK; Kuiper J; van Berkel TJ Arterioscler Thromb; 1992 Sep; 12(9):1079-87. PubMed ID: 1525123 [TBL] [Abstract][Full Text] [Related]
18. Lipoperoxidative injury to macrophages by oxidatively modified low density lipoprotein may play an important role in foam cell formation. Liu SX; Zhou M; Chen Y; Wen WY; Sun MJ Atherosclerosis; 1996 Mar; 121(1):55-61. PubMed ID: 8678924 [TBL] [Abstract][Full Text] [Related]
19. Cholesterol and oxysterol metabolism and subcellular distribution in macrophage foam cells. Accumulation of oxidized esters in lysosomes. Brown AJ; Mander EL; Gelissen IC; Kritharides L; Dean RT; Jessup W J Lipid Res; 2000 Feb; 41(2):226-37. PubMed ID: 10681406 [TBL] [Abstract][Full Text] [Related]
20. A macrophage receptor that recognizes oxidized low density lipoprotein but not acetylated low density lipoprotein. Sparrow CP; Parthasarathy S; Steinberg D J Biol Chem; 1989 Feb; 264(5):2599-604. PubMed ID: 2914924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]