These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 2614259)
21. Different expression of modified low density lipoprotein receptors in rabbit peritoneal macrophages and Kupffer cells. Ueda Y; Arai H; Kawashima A; Nagano Y; Cho M; Tanaka M; Kita T Atherosclerosis; 1993 Jun; 101(1):25-35. PubMed ID: 8216500 [TBL] [Abstract][Full Text] [Related]
22. Oxidation of LDL enhances the cholesteryl ester transfer protein (CETP)-mediated cholesteryl ester transfer rate to HDL, bringing on a diminished net transfer of cholesteryl ester from HDL to oxidized LDL. Castilho LN; Oliveira HC; Cazita PM; de Oliveira AC; Sesso A; Quintão EC Clin Chim Acta; 2001 Feb; 304(1-2):99-106. PubMed ID: 11165204 [TBL] [Abstract][Full Text] [Related]
23. Uptake of oxidized low-density lipoprotein in a THP-1 cell line lacking scavenger receptor A. Sugano R; Yamamura T; Harada-Shiba M; Miyake Y; Yamamoto A Atherosclerosis; 2001 Oct; 158(2):351-7. PubMed ID: 11583713 [TBL] [Abstract][Full Text] [Related]
24. Modification of low density lipoprotein by lipoprotein lipase or hepatic lipase induces enhanced uptake and cholesterol accumulation in cells. Aviram M; Bierman EL; Chait A J Biol Chem; 1988 Oct; 263(30):15416-22. PubMed ID: 3170589 [TBL] [Abstract][Full Text] [Related]
25. Reversible accumulation of cholesteryl esters in macrophages incubated with acetylated lipoproteins. Brown MS; Goldstein JL; Krieger M; Ho YK; Anderson RG J Cell Biol; 1979 Sep; 82(3):597-613. PubMed ID: 229107 [TBL] [Abstract][Full Text] [Related]
26. Modification of very low density lipoproteins leads to macrophage scavenger receptor uptake and cholesteryl ester deposition. Mazzone T; Lopez C; Bergstraesser L Arteriosclerosis; 1987; 7(2):191-6. PubMed ID: 3579725 [TBL] [Abstract][Full Text] [Related]
27. Effects of fluvastatin and its major metabolites on low-density lipoprotein oxidation and cholesterol esterification in macrophages. Tanaka K; Yasuhara M; Suzumura K; Narita H; Suzuki T Jpn J Pharmacol; 2001 Jul; 86(3):289-96. PubMed ID: 11488428 [TBL] [Abstract][Full Text] [Related]
28. Esterification of low density lipoprotein cholesterol in human fibroblasts and its absence in homozygous familial hypercholesterolemia. Goldstein JL; Dana SE; Brown MS Proc Natl Acad Sci U S A; 1974 Nov; 71(11):4288-92. PubMed ID: 4373706 [TBL] [Abstract][Full Text] [Related]
29. Role of pre-existing redox profile of human macrophages on lipid synthesis and cholesteryl ester cycle in presence of native, acetylated and oxidised low density lipoprotein. Bravo E; Napolitano M; Rivabene R J Steroid Biochem Mol Biol; 2001 Apr; 77(1):73-81. PubMed ID: 11358676 [TBL] [Abstract][Full Text] [Related]
30. Esterification of exogenously derived free cholesterol by cultured fibroblasts. Slotte JP; Björkerud S Med Biol; 1986; 64(1):9-14. PubMed ID: 3724260 [TBL] [Abstract][Full Text] [Related]
31. Inhibition of cellular cholesterol esterification can decrease low density lipoprotein receptor number in human fibroblasts. Middleton B Biochem Biophys Res Commun; 1987 May; 145(1):350-6. PubMed ID: 3593342 [TBL] [Abstract][Full Text] [Related]
32. Angiotensin II-modified LDL is taken up by macrophages via the scavenger receptor, leading to cellular cholesterol accumulation. Keidar S; Kaplan M; Aviram M Arterioscler Thromb Vasc Biol; 1996 Jan; 16(1):97-105. PubMed ID: 8548433 [TBL] [Abstract][Full Text] [Related]
33. Inhibitory effects of rosa roxburghii tratt juice on in vitro oxidative modification of low density lipoprotein and on the macrophage growth and cellular cholesteryl ester accumulation induced by oxidized low density lipoprotein. Zhang C; Liu X; Qiang H; Li K; Wang J; Chen D; Zhuang Y Clin Chim Acta; 2001 Nov; 313(1-2):37-43. PubMed ID: 11694237 [TBL] [Abstract][Full Text] [Related]
34. Lipid-protein particles secreted from activated platelets reduce macrophage uptake of low density lipoprotein. Fuhrman B; Brook GJ; Aviram M Atherosclerosis; 1991 Aug; 89(2-3):163-73. PubMed ID: 1793444 [TBL] [Abstract][Full Text] [Related]
35. Cholesteryl ester handling by RAW264 macrophages: response to native and acetylated low density lipoprotein. Berg KA; Petty HR Mol Cell Biochem; 1988 Nov; 84(1):29-40. PubMed ID: 3231215 [TBL] [Abstract][Full Text] [Related]
36. Effect of hyperapo B LDL on cholesterol esterification in THP-1 macrophages. Kafonek SD; Raikhel I; Bachorik PS; Kwiterovich PO Atherosclerosis; 1993 Aug; 102(1):23-36. PubMed ID: 8257450 [TBL] [Abstract][Full Text] [Related]
37. Oxidative and malondialdehyde modification of low-density lipoprotein: a comparative study of binding and degradation by macrophages and endothelial cells. Zhou M; Chen Y; Liu S; Ding Z; Pang Z; Wan J Br J Biomed Sci; 1998 Sep; 55(3):192-8. PubMed ID: 10367404 [TBL] [Abstract][Full Text] [Related]
38. THP-1 cells form foam cells in response to coculture with lipoproteins but not platelets. Banka CL; Black AS; Dyer CA; Curtiss LK J Lipid Res; 1991 Jan; 32(1):35-43. PubMed ID: 2010692 [TBL] [Abstract][Full Text] [Related]
39. Hydrolysis of cholesteryl ester in low density lipoprotein converts this lipoprotein to a liposome. Chao FF; Blanchette-Mackie EJ; Tertov VV; Skarlatos SI; Chen YJ; Kruth HS J Biol Chem; 1992 Mar; 267(7):4992-8. PubMed ID: 1537875 [TBL] [Abstract][Full Text] [Related]
40. Prevention of the hyperlipidemic serum or LDL-induced cellular cholesterol ester accumulation by 22-hydroxycholesterol and its analogue. Bates SR; Jett CM; Miller JE Biochim Biophys Acta; 1983 Oct; 753(3):281-93. PubMed ID: 6615863 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]