BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 26142723)

  • 21. Oxygen equilibria of Octopus dofleini hemocyanin.
    Miller KI
    Biochemistry; 1985 Aug; 24(17):4582-6. PubMed ID: 4063340
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Association of deep-sea incirrate octopods with manganese crusts and nodule fields in the Pacific Ocean.
    Purser A; Marcon Y; Hoving HT; Vecchione M; Piatkowski U; Eason D; Bluhm H; Boetius A
    Curr Biol; 2016 Dec; 26(24):R1268-R1269. PubMed ID: 27997834
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequence of the Octopus dofleini hemocyanin subunit: structural and evolutionary implications.
    Miller KI; Cuff ME; Lang WF; Varga-Weisz P; Field KG; van Holde KE
    J Mol Biol; 1998 May; 278(4):827-42. PubMed ID: 9614945
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temperature effects on hemocyanin oxygen binding in an antarctic cephalopod.
    Zielinski S; Sartoris FJ; Pörtner HO
    Biol Bull; 2001 Feb; 200(1):67-76. PubMed ID: 11249213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptive venom evolution and toxicity in octopods is driven by extensive novel gene formation, expansion, and loss.
    Whitelaw BL; Cooke IR; Finn J; da Fonseca RR; Ritschard EA; Gilbert MTP; Simakov O; Strugnell JM
    Gigascience; 2020 Nov; 9(11):. PubMed ID: 33175168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tris: an allosteric effector of tarantula haemocyanin.
    Sterner R; Bardehle K; Paul R; Decker H
    FEBS Lett; 1994 Feb; 339(1-2):37-9. PubMed ID: 8313977
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identical linkage and cooperativity of oxygen and carbon monoxide binding to Octopus dofleini hemocyanin.
    Connelly PR; Gill SJ; Miller KI; Zhou G; van Holde KE
    Biochemistry; 1989 Feb; 28(4):1835-43. PubMed ID: 2719937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heavy metal ion interactions with Callinectes sapidus hemocyanin: structural and functional changes induced by a variety of heavy metal ions.
    Brouwer M; Bonaventura C; Bonaventura J
    Biochemistry; 1982 May; 21(10):2529-38. PubMed ID: 7093201
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Equilibrium and kinetic studies of oxygen binding to the haemocyanin from the freshwater snail Lymnaea stagnalis.
    Dawson A; Wood EJ
    Biochem J; 1982 Oct; 207(1):145-53. PubMed ID: 7181856
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Myriapod haemocyanin: the first three-dimensional reconstruction of
    Riciluca KCT; Borges AC; Mello JFR; de Oliveira UC; Serdan DC; Florez-Ariza A; Chaparro E; Nishiyama MY; Cassago A; Junqueira-de-Azevedo ILM; van Heel M; Silva PI; Portugal RV
    Open Biol; 2020 Apr; 10(4):190258. PubMed ID: 32228398
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulators of haemocyanin oxygen affinity in the hypoxia- and sulphide-tolerant Baltic isopod Saduria entomon (L.).
    Hagerman L; Vismann B
    J Comp Physiol B; 2001 Nov; 171(8):695-9. PubMed ID: 11765978
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Origin, evolution and classification of type-3 copper proteins: lineage-specific gene expansions and losses across the Metazoa.
    Aguilera F; McDougall C; Degnan BM
    BMC Evol Biol; 2013 May; 13():96. PubMed ID: 23634722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. cDNA cloning of the Octopus dofleini hemocyanin: sequence of the carboxyl-terminal domain.
    Lang WH
    Biochemistry; 1988 Sep; 27(19):7276-82. PubMed ID: 3207675
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cupredoxin-like domains in haemocyanins.
    Jaenicke E; Büchler K; Markl J; Decker H; Barends TR
    Biochem J; 2010 Feb; 426(3):373-8. PubMed ID: 20025608
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapana thomasiana grosse (gastropoda) haemocyanin: spectroscopic studies of the structure in solution and the conformational stability of the native protein and its structural subunits.
    Dolashka P; Genov N; Parvanova K; Voelter W; Geiger M; Stoeva S
    Biochem J; 1996 Apr; 315 ( Pt 1)(Pt 1):139-44. PubMed ID: 8670098
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystal Structure of the 3.8-MDa Respiratory Supermolecule Hemocyanin at 3.0 Å Resolution.
    Gai Z; Matsuno A; Kato K; Kato S; Khan MRI; Shimizu T; Yoshioka T; Kato Y; Kishimura H; Kanno G; Miyabe Y; Terada T; Tanaka Y; Yao M
    Structure; 2015 Dec; 23(12):2204-2212. PubMed ID: 26602184
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal structure of a functional unit from Octopus hemocyanin.
    Cuff ME; Miller KI; van Holde KE; Hendrickson WA
    J Mol Biol; 1998 May; 278(4):855-70. PubMed ID: 9614947
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular basis of the Bohr effect in arthropod hemocyanin.
    Hirota S; Kawahara T; Beltramini M; Di Muro P; Magliozzo RS; Peisach J; Powers LS; Tanaka N; Nagao S; Bubacco L
    J Biol Chem; 2008 Nov; 283(46):31941-8. PubMed ID: 18725416
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure determination of Panulirus interruptus haemocyanin at 3.2 A resolution. Successful phase extension by sixfold density averaging.
    Gaykema WP; Volbeda A; Hol WG
    J Mol Biol; 1986 Jan; 187(2):255-75. PubMed ID: 3701867
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The oxygen-binding properties of hemocyanin from the mollusk Concholepas concholepas.
    González A; Nova E; Del Campo M; Manubens A; De Ioannes A; Ferreira J; Becker MI
    Biochim Biophys Acta Proteins Proteom; 2017 Dec; 1865(12):1746-1757. PubMed ID: 28844742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.