These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26142755)

  • 1. The deal with diel: Temperature fluctuations, asymmetrical warming, and ubiquitous metals contaminants.
    Hallman TA; Brooks ML
    Environ Pollut; 2015 Nov; 206():88-94. PubMed ID: 26142755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-mediated climate susceptibility in a warming world: Larval and latent effects on a model amphibian.
    Hallman TA; Brooks ML
    Environ Toxicol Chem; 2016 Jul; 35(7):1872-82. PubMed ID: 26677143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate change, multiple stressors, and the decline of ectotherms.
    Rohr JR; Palmer BD
    Conserv Biol; 2013 Aug; 27(4):741-51. PubMed ID: 23773091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ameliorative effects of sodium chloride on acute copper toxicity among Cope's gray tree frog (Hyla chrysoscelis) and green frog (Rana clamitans) embryos.
    Brown MG; Dobbs EK; Snodgrass JW; Ownby DR
    Environ Toxicol Chem; 2012 Apr; 31(4):836-42. PubMed ID: 22278879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicity of Cadmium, Copper, and Zinc to the Threatened Chiricahua Leopard Frog (Lithobates [Rana] chiricahuensis).
    Calfee RD; Little EE
    Bull Environ Contam Toxicol; 2017 Dec; 99(6):679-683. PubMed ID: 29098305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased sensitivity of subantarctic marine invertebrates to copper under a changing climate - Effects of salinity and temperature.
    Holan JR; King CK; Proctor AH; Davis AR
    Environ Pollut; 2019 Jun; 249():54-62. PubMed ID: 30878862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Warmer temperature modifies effects of polybrominated diphenyl ethers on hormone profiles in leopard frog tadpoles (Lithobates pipiens).
    Freitas MB; Brown CT; Karasov WH
    Environ Toxicol Chem; 2017 Jan; 36(1):120-127. PubMed ID: 27228472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Warming temperatures exacerbate effects of microplastics in a widespread zooplankton species.
    Klasios N; Birch A; Murillo AM; Tseng M
    Environ Pollut; 2024 May; 349():123918. PubMed ID: 38574946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field and laboratory studies reveal interacting effects of stream oxygenation and warming on aquatic ectotherms.
    Verberk WC; Durance I; Vaughan IP; Ormerod SJ
    Glob Chang Biol; 2016 May; 22(5):1769-78. PubMed ID: 26924811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between a small chronic increase in diel water temperature and exposure to a common environmental contaminant on development of Arizona tiger salamander larvae.
    Park D; Freel KL; Daniels KD; Propper CR
    Gen Comp Endocrinol; 2016 Nov; 238():69-77. PubMed ID: 27318278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating copper toxicity and climate change to understand extinction risk to two species of pond-breeding anurans.
    Weir SM; Scott DE; Salice CJ; Lance SL
    Ecol Appl; 2016 Sep; 26(6):1721-1732. PubMed ID: 27755699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opposite effects of daytime and nighttime warming on top-down control of plant diversity.
    Barton BT; Schmitz OJ
    Ecology; 2018 Jan; 99(1):13-20. PubMed ID: 29080358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal variability alters the impact of climate warming on consumer-resource systems.
    Fey SB; Vasseur DA
    Ecology; 2016 Jul; 97(7):1690-1699. PubMed ID: 27859173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex interactions between climate change and toxicants: evidence that temperature variability increases sensitivity to cadmium.
    Kimberly DA; Salice CJ
    Ecotoxicology; 2014 Jul; 23(5):809-17. PubMed ID: 24623389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water Temperature Affects Susceptibility to Ranavirus.
    Brand MD; Hill RD; Brenes R; Chaney JC; Wilkes RP; Grayfer L; Miller DL; Gray MJ
    Ecohealth; 2016 Jun; 13(2):350-9. PubMed ID: 27283058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of acclimation on heat-escape temperatures of two aphid species: Implications for estimating behavioral response of insects to climate warming.
    Ma G; Ma CS
    J Insect Physiol; 2012 Mar; 58(3):303-9. PubMed ID: 21939662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicokinetics of Zn and Cd in the earthworm Eisenia andrei exposed to metal-contaminated soils under different combinations of air temperature and soil moisture content.
    González-Alcaraz MN; Loureiro S; van Gestel CAM
    Chemosphere; 2018 Apr; 197():26-32. PubMed ID: 29331715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrasting the potential effects of daytime versus nighttime warming on insects.
    Speights CJ; Harmon JP; Barton BT
    Curr Opin Insect Sci; 2017 Oct; 23():1-6. PubMed ID: 29129273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in copper toxicity towards diatom communities with experimental warming.
    Morin S; Lambert AS; Rodriguez EP; Dabrin A; Coquery M; Pesce S
    J Hazard Mater; 2017 Jul; 334():223-232. PubMed ID: 28415000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactive effects of contaminants and climate-related stressors: high temperature increases sensitivity to cadmium.
    Kimberly DA; Salice CJ
    Environ Toxicol Chem; 2013 Jun; 32(6):1337-43. PubMed ID: 23427064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.