These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 26142765)
1. Ductal closure and near-infrared spectroscopy for regional oxygenation monitoring in ductus-dependent congenital heart disease. Séguéla PE; Guillet E; Thambo JB; Mauriat P Arch Pediatr; 2015 Aug; 22(8):857-60. PubMed ID: 26142765 [TBL] [Abstract][Full Text] [Related]
2. Elevated NCX1 and NCKX4 expression in the patent postnatal ductus arteriosus of ductal-dependent congenital heart disease patients. Hong H; Xia Y; Sun Y; Ye L; Liu J; Bai J; Zhang H Pediatr Cardiol; 2015 Apr; 36(4):743-51. PubMed ID: 25500693 [TBL] [Abstract][Full Text] [Related]
3. Abdominal Near-Infrared Spectroscopy Detects Low Mesenteric Perfusion Early in Preterm Infants with Hemodynamic Significant Ductus Arteriosus. Ledo A; Aguar M; Núñez-Ramiro A; Saénz P; Vento M Neonatology; 2017; 112(3):238-245. PubMed ID: 28704836 [TBL] [Abstract][Full Text] [Related]
4. Surgical closure of the patent ductus arteriosus and its effect on the cerebral tissue oxygenation. Vanderhaegen J; De Smet D; Meyns B; Van De Velde M; Van Huffel S; Naulaers G Acta Paediatr; 2008 Dec; 97(12):1640-4. PubMed ID: 18793291 [TBL] [Abstract][Full Text] [Related]
5. Perioperative use of cerebral and renal near-infrared spectroscopy in neonates: a 24-h observational study. Koch HW; Hansen TG Paediatr Anaesth; 2016 Feb; 26(2):190-8. PubMed ID: 26725989 [TBL] [Abstract][Full Text] [Related]
6. [Ductus arteriosus in neonatal cyanotic cardiopathies. Value of the recording of the cutaneous partial pressure of oxygen]. de Geeter B; Heitz A; Eisenmann B; Willard D; Kieny R Arch Mal Coeur Vaiss; 1981 May; 74(5):573-8. PubMed ID: 6794478 [TBL] [Abstract][Full Text] [Related]
7. Cerebral blood volume changes during closure by surgery of patent ductus arteriosus. Hüning BM; Asfour B; König S; Hess N; Roll C Arch Dis Child Fetal Neonatal Ed; 2008 Jul; 93(4):F261-4. PubMed ID: 18252817 [TBL] [Abstract][Full Text] [Related]
8. Near-infrared spectroscopy as a screening tool for patent ductus arteriosus in extremely low birth weight infants. Underwood MA; Milstein JM; Sherman MP Neonatology; 2007; 91(2):134-9. PubMed ID: 17344664 [TBL] [Abstract][Full Text] [Related]
9. Expression of prostanoid receptors in human ductus arteriosus. Leonhardt A; Glaser A; Wegmann M; Schranz D; Seyberth H; Nüsing R Br J Pharmacol; 2003 Feb; 138(4):655-9. PubMed ID: 12598419 [TBL] [Abstract][Full Text] [Related]
10. Regional differences in tissue oxygenation during cardiopulmonary bypass for correction of congenital heart disease in neonates and small infants: relevance of near-infrared spectroscopy. Redlin M; Koster A; Huebler M; Boettcher W; Nagdyman N; Hetzer R; Kuppe H; Kuebler WM J Thorac Cardiovasc Surg; 2008 Oct; 136(4):962-7. PubMed ID: 18954637 [TBL] [Abstract][Full Text] [Related]
11. Effect of indomethacin infused over 30 minutes on cerebral fractional tissue oxygen extraction in preterm newborns with a patent ductus arteriosus. Keating P; Verhagen E; van Hoften J; ter Horst H; Bos AF Neonatology; 2010; 98(3):232-7. PubMed ID: 20389128 [TBL] [Abstract][Full Text] [Related]
12. The molecular mechanisms of oxygen-sensing in human ductus arteriosus smooth muscle cells: A comprehensive transcriptome profile reveals a central role for mitochondria. Bentley RET; Hindmarch CCT; Dunham-Snary KJ; Snetsinger B; Mewburn JD; Thébaud A; Lima PDA; Thébaud B; Archer SL Genomics; 2021 Sep; 113(5):3128-3140. PubMed ID: 34245829 [TBL] [Abstract][Full Text] [Related]
13. Early end-tidal carbon monoxide levels, patency of the ductus arteriosus and regional cerebral oxygenation in preterm infants. Dix LM; Blok CA; Lemmers PM; van der Aa N; Molenschot MC; Vreman HJ; Krediet T; van Bel F Neonatology; 2014; 105(3):161-5. PubMed ID: 24356407 [TBL] [Abstract][Full Text] [Related]
14. Influence of ductus arteriosus on peripheral muscle oxygenation and perfusion in neonates. Mileder LP; Müller T; Baik-Schneditz N; Pansy J; Schwaberger B; Binder-Heschl C; Urlesberger B; Pichler G Physiol Meas; 2017 Dec; 39(1):015003. PubMed ID: 29161235 [TBL] [Abstract][Full Text] [Related]
15. Prevalence of spontaneous closure of the ductus arteriosus in neonates at a birth weight of 1000 grams or less. Koch J; Hensley G; Roy L; Brown S; Ramaciotti C; Rosenfeld CR Pediatrics; 2006 Apr; 117(4):1113-21. PubMed ID: 16585305 [TBL] [Abstract][Full Text] [Related]
16. Reference ranges for regional cerebral tissue oxygen saturation and fractional oxygen extraction in neonates during immediate transition after birth. Pichler G; Binder C; Avian A; Beckenbach E; Schmölzer GM; Urlesberger B J Pediatr; 2013 Dec; 163(6):1558-63. PubMed ID: 23972642 [TBL] [Abstract][Full Text] [Related]
17. The patent ductus arteriosus in term infants, children, and adults. Schneider DJ Semin Perinatol; 2012 Apr; 36(2):146-53. PubMed ID: 22414886 [TBL] [Abstract][Full Text] [Related]
18. The ductus arteriosus in neonates with critical congenital heart disease. Wheeler CR; Sen S; Levy PT J Perinatol; 2022 Dec; 42(12):1708-1713. PubMed ID: 35840708 [TBL] [Abstract][Full Text] [Related]
19. End-Organ Saturation Differences in Early Neonatal Transition for Left- versus Right-Sided Congenital Heart Disease. Altit G; Bhombal S; Tacy TA; Chock VY Neonatology; 2018; 114(1):53-61. PubMed ID: 29649824 [TBL] [Abstract][Full Text] [Related]
20. Perioperative Near-Infrared Spectroscopy Monitoring in Neonates With Congenital Heart Disease: Relationship of Cerebral Tissue Oxygenation Index Variability With Neurodevelopmental Outcome. Spaeder MC; Klugman D; Skurow-Todd K; Glass P; Jonas RA; Donofrio MT Pediatr Crit Care Med; 2017 Mar; 18(3):213-218. PubMed ID: 28067688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]