These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 26142907)

  • 1. Using of TiN-nanotubes and Cu-nanoparticles for conversion of CO2 to hydrocarbon fuels.
    Mahdavian L
    J Mol Model; 2015 Jul; 21(7):187. PubMed ID: 26142907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic insight into effect of doping of Ni on CO
    Ou LH
    J Mol Model; 2016 Oct; 22(10):246. PubMed ID: 27678451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon dioxide conversion into hydrocarbon fuels on defective graphene-supported Cu nanoparticles from first principles.
    Lim DH; Jo JH; Shin DY; Wilcox J; Ham HC; Nam SW
    Nanoscale; 2014 May; 6(10):5087-92. PubMed ID: 24695587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic Effect of Cu Single Atoms and Au-Cu Alloy Nanoparticles on TiO
    Yu Y; Dong X; Chen P; Geng Q; Wang H; Li J; Zhou Y; Dong F
    ACS Nano; 2021 Sep; 15(9):14453-14464. PubMed ID: 34469113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen Functionalized Copper Nanoparticles for Solar-Driven Conversion of Carbon Dioxide to Methane.
    Esmaeilirad M; Kondori A; Song B; Ruiz Belmonte A; Wei J; Kucuk K; Khanvilkar SM; Efimoff E; Chen W; Segre CU; Shahbazian-Yassar R; Asadi M
    ACS Nano; 2020 Feb; 14(2):2099-2108. PubMed ID: 31971779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4-Pt nanocomposite photocatalysts.
    Yu J; Wang K; Xiao W; Cheng B
    Phys Chem Chem Phys; 2014 Jun; 16(23):11492-501. PubMed ID: 24801641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CuMnOS Nanoflowers with Different Cu
    Chen X; Abdullah H; Kuo DH
    Sci Rep; 2017 Jan; 7():41194. PubMed ID: 28117456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CO
    Ali E; Sayah MA; Dawood AAA; Hamoody AM; Hamoodah ZJ; Ramadan MF; Abbas HA; Alawadi A; Alsalamy A; Abbass R
    J Mol Model; 2023 Nov; 29(12):381. PubMed ID: 37985487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the Photothermal Catalytic Mechanism of CO
    Novoa-Cid M; Baldovi HG
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33172154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density functional theory study of carbon dioxide electrochemical reduction on the Fe(100) surface.
    Bernstein NJ; Akhade SA; Janik MJ
    Phys Chem Chem Phys; 2014 Jul; 16(27):13708-17. PubMed ID: 24722651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculations of the effect of catalyst size and structure on the electrocatalytic reduction of CO
    Weal GR; Guðmundsson KI; Mackenzie FD; Whiting JR; Smith NB; Skúlason E; Garden AL
    Nanoscale; 2024 Mar; 16(10):5242-5256. PubMed ID: 38362911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2.
    Wang C; Ranasingha O; Natesakhawat S; Ohodnicki PR; Andio M; Lewis JP; Matranga C
    Nanoscale; 2013 Aug; 5(15):6968-74. PubMed ID: 23794025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding of Electrochemical Mechanisms for CO
    Li N; Chen X; Ong WJ; MacFarlane DR; Zhao X; Cheetham AK; Sun C
    ACS Nano; 2017 Nov; 11(11):10825-10833. PubMed ID: 28892617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct CO
    Rawool SA; Belgamwar R; Jana R; Maity A; Bhumla A; Yigit N; Datta A; Rupprechter G; Polshettiwar V
    Chem Sci; 2021 Apr; 12(16):5774-5786. PubMed ID: 35342542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial photosynthesis of C1-C3 hydrocarbons from water and CO2 on titanate nanotubes decorated with nanoparticle elemental copper and CdS quantum dots.
    Park H; Ou HH; Colussi AJ; Hoffmann MR
    J Phys Chem A; 2015 May; 119(19):4658-66. PubMed ID: 25611343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocatalytic reduction of CO2 with H2O to CH4 on Cu(I) supported TiO2 nanosheets with defective {001} facets.
    Zhu S; Liang S; Tong Y; An X; Long J; Fu X; Wang X
    Phys Chem Chem Phys; 2015 Apr; 17(15):9761-70. PubMed ID: 25773361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the mechanism of the capture of CO
    Liu H; Qin Q; Zhang R; Ling L; Wang B
    Phys Chem Chem Phys; 2017 Sep; 19(35):24357-24368. PubMed ID: 28850134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon Dioxide Conversion to Methanol over Size-Selected Cu4 Clusters at Low Pressures.
    Liu C; Yang B; Tyo E; Seifert S; DeBartolo J; von Issendorff B; Zapol P; Vajda S; Curtiss LA
    J Am Chem Soc; 2015 Jul; 137(27):8676-9. PubMed ID: 26115184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bright and dark excitons in semiconductor carbon nanotubes: insights from electronic structure calculations.
    Kilina S; Badaeva E; Piryatinski A; Tretiak S; Saxena A; Bishop AR
    Phys Chem Chem Phys; 2009 Jun; 11(21):4113-23. PubMed ID: 19458812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.