These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 26143349)

  • 21. Development of a sexual dimorphism in a central pattern generator driving a rhythmic behavior: The role of glia-mediated potassium buffering in the pacemaker nucleus of the weakly electric fish Apteronotus leptorhynchus.
    Zupanc GKH
    Dev Neurobiol; 2020 Jan; 80(1-2):6-15. PubMed ID: 32090501
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Behavioral responses to jamming and 'phantom' jamming stimuli in the weakly electric fish Eigenmannia.
    Carlson BA; Kawasaki M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Sep; 193(9):927-41. PubMed ID: 17609965
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Weakly electric fish distinguish between envelope stimuli arising from different behavioral contexts.
    Thomas RA; Metzen MG; Chacron MJ
    J Exp Biol; 2018 Aug; 221(Pt 15):. PubMed ID: 29954835
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of water temperature on the electric organ discharge (EOD) of the weakly electric fish Marcusenius cyprinoides (Mormyridae).
    Toerring MJ; Serrier J
    J Exp Biol; 1978 Jun; 74():133-50. PubMed ID: 670870
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chirping and asymmetric jamming avoidance responses in the electric fish
    Petzold JM; Alves-Gomes JA; Smith GT
    J Exp Biol; 2018 Sep; 221(Pt 17):. PubMed ID: 30012575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estrogen modifies an electrocommunication signal by altering the electrocyte sodium current in an electric fish, Sternopygus.
    Dunlap KD; McAnelly ML; Zakon HH
    J Neurosci; 1997 Apr; 17(8):2869-75. PubMed ID: 9092608
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distinctive mechanisms underlie the emission of social electric signals of submission in
    Comas V; Langevin K; Silva A; Borde M
    J Exp Biol; 2019 Jun; 222(Pt 11):. PubMed ID: 31085603
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Food deprivation reduces and leptin increases the amplitude of an active sensory and communication signal in a weakly electric fish.
    Sinnett PM; Markham MR
    Horm Behav; 2015 May; 71():31-40. PubMed ID: 25870018
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electric organ discharges and near-field spatiotemporal patterns of the electromotive force in a sympatric assemblage of Neotropical electric knifefish.
    Waddell JC; Rodríguez-Cattáneo A; Caputi AA; Crampton WGR
    J Physiol Paris; 2016 Oct; 110(3 Pt B):164-181. PubMed ID: 27794446
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for a direct effect of androgens upon electroreceptor tuning.
    Keller CH; Zakon HH; Sanchez DY
    J Comp Physiol A; 1986 Apr; 158(3):301-10. PubMed ID: 3723438
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential production of chirping behavior evoked by electrical stimulation of the weakly electric fish, Apteronotus leptorhynchus.
    Engler G; Zupanc GK
    J Comp Physiol A; 2001 Nov; 187(9):747-56. PubMed ID: 11778836
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gain control in the electrosensory system: a role for the descending projections to the electrosensory lateral line lobe.
    Bastian J
    J Comp Physiol A; 1986 Apr; 158(4):505-15. PubMed ID: 3014129
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influences of thermal acclimation and acute temperature change on the motility of epithelial wound-healing cells (keratocytes) of tropical, temperate and Antarctic fish.
    Ream RA; Theriot JA; Somero GN
    J Exp Biol; 2003 Dec; 206(Pt 24):4539-51. PubMed ID: 14610038
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exogenous thyroid hormones regulate the activity of citrate synthase and cytochrome c oxidase in warm- but not cold-acclimated lake whitefish (Coregonus clupeaformis).
    Zak MA; Regish AM; McCormick SD; Manzon RG
    Gen Comp Endocrinol; 2017 Jun; 247():215-222. PubMed ID: 28212894
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Supervised learning algorithm for analysis of communication signals in the weakly electric fish Apteronotus leptorhynchus.
    Lehotzky D; Zupanc GKH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 May; 210(3):443-458. PubMed ID: 37704754
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electric organ discharge diversification in mormyrid weakly electric fish is associated with differential expression of voltage-gated ion channel genes.
    Nagel R; Kirschbaum F; Tiedemann R
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Mar; 203(3):183-195. PubMed ID: 28233058
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electric organ discharge frequencies from two weakly electric gymnotiform fish exposed to carbon dioxide, conductivity and pH changes.
    Pimentel-Souza F
    Braz J Med Biol Res; 1988; 21(1):119-21. PubMed ID: 3140991
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chronic androgen treatment increases action potential duration in the electric organ of Sternopygus.
    Mills A; Zakon HH
    J Neurosci; 1991 Aug; 11(8):2349-61. PubMed ID: 1869919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Individual variation in and androgen-modulation of the sodium current in electric organ.
    Ferrari MB; McAnelly ML; Zakon HH
    J Neurosci; 1995 May; 15(5 Pt 2):4023-32. PubMed ID: 7751963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Derived loss of signal complexity and plasticity in a genus of weakly electric fish.
    Saenz DE; Gu T; Ban Y; Winemiller KO; Markham MR
    J Exp Biol; 2021 Jun; 224(12):. PubMed ID: 34109419
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.