These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 26143368)
1. Development of highly stabilized curcumin nanoparticles by flash nanoprecipitation and lyophilization. Chow SF; Wan KY; Cheng KK; Wong KW; Sun CC; Baum L; Chow AH Eur J Pharm Biopharm; 2015 Aug; 94():436-49. PubMed ID: 26143368 [TBL] [Abstract][Full Text] [Related]
2. Nanonization of curcumin by antisolvent precipitation: process development, characterization, freeze drying and stability performance. Yadav D; Kumar N Int J Pharm; 2014 Dec; 477(1-2):564-77. PubMed ID: 25445971 [TBL] [Abstract][Full Text] [Related]
3. Assessment of the relative performance of a confined impinging jets mixer and a multi-inlet vortex mixer for curcumin nanoparticle production. Chow SF; Sun CC; Chow AH Eur J Pharm Biopharm; 2014 Oct; 88(2):462-71. PubMed ID: 25016977 [TBL] [Abstract][Full Text] [Related]
4. A systematic study on lyophilization process of polymersomes for long-term storage using doxorubicin-loaded (PEG)₃-PLA nanopolymersomes. Ayen WY; Kumar N Eur J Pharm Sci; 2012 Aug; 46(5):405-14. PubMed ID: 22465658 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of doxorubicin nanoparticles by controlled antisolvent precipitation for enhanced intracellular delivery. Tam YT; To KK; Chow AH Colloids Surf B Biointerfaces; 2016 Mar; 139():249-58. PubMed ID: 26724466 [TBL] [Abstract][Full Text] [Related]
6. Formation of curcumin nanoparticles by flash nanoprecipitation from emulsions. Margulis K; Magdassi S; Lee HS; Macosko CW J Colloid Interface Sci; 2014 Nov; 434():65-70. PubMed ID: 25168584 [TBL] [Abstract][Full Text] [Related]
7. Highly stabilized curcumin nanoparticles tested in an in vitro blood-brain barrier model and in Alzheimer's disease Tg2576 mice. Cheng KK; Yeung CF; Ho SW; Chow SF; Chow AH; Baum L AAPS J; 2013 Apr; 15(2):324-36. PubMed ID: 23229335 [TBL] [Abstract][Full Text] [Related]
9. Development of curcumin nanocrystal: physical aspects. Rachmawati H; Al Shaal L; Müller RH; Keck CM J Pharm Sci; 2013 Jan; 102(1):204-14. PubMed ID: 23047816 [TBL] [Abstract][Full Text] [Related]
10. Freeze drying of nanosuspensions, 2: the role of the critical formulation temperature on stability of drug nanosuspensions and its practical implication on process design. Beirowski J; Inghelbrecht S; Arien A; Gieseler H J Pharm Sci; 2011 Oct; 100(10):4471-81. PubMed ID: 21607957 [TBL] [Abstract][Full Text] [Related]
11. Development and optimization of curcumin-loaded mannosylated chitosan nanoparticles using response surface methodology in the treatment of visceral leishmaniasis. Chaubey P; Patel RR; Mishra B Expert Opin Drug Deliv; 2014 Aug; 11(8):1163-81. PubMed ID: 24875148 [TBL] [Abstract][Full Text] [Related]
12. Freeze drying optimization of polymeric nanoparticles for ocular flurbiprofen delivery: effect of protectant agents and critical process parameters on long-term stability. Ramos Yacasi GR; Calpena Campmany AC; Egea Gras MA; Espina García M; García López ML Drug Dev Ind Pharm; 2017 Apr; 43(4):637-651. PubMed ID: 28044462 [TBL] [Abstract][Full Text] [Related]
13. Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer's disease mice using magnetic resonance imaging (MRI). Cheng KK; Chan PS; Fan S; Kwan SM; Yeung KL; Wáng YX; Chow AH; Wu EX; Baum L Biomaterials; 2015 Mar; 44():155-72. PubMed ID: 25617135 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of Curcumin Solubility by Phase Change from Crystalline to Amorphous in Cur-TPGS Nanosuspension. Shin GH; Li J; Cho JH; Kim JT; Park HJ J Food Sci; 2016 Feb; 81(2):N494-501. PubMed ID: 26766628 [TBL] [Abstract][Full Text] [Related]
15. Development of ascorbyl palmitate nanocrystals applying the nanosuspension technology. Teeranachaideekul V; Junyaprasert VB; Souto EB; Müller RH Int J Pharm; 2008 Apr; 354(1-2):227-34. PubMed ID: 18242898 [TBL] [Abstract][Full Text] [Related]
16. Preparation and characterization of intravenously injectable curcumin nanosuspension. Gao Y; Li Z; Sun M; Guo C; Yu A; Xi Y; Cui J; Lou H; Zhai G Drug Deliv; 2011 Feb; 18(2):131-42. PubMed ID: 20939679 [TBL] [Abstract][Full Text] [Related]
17. Application of flash nanoprecipitation to fabricate poorly water-soluble drug nanoparticles. Tao J; Chow SF; Zheng Y Acta Pharm Sin B; 2019 Jan; 9(1):4-18. PubMed ID: 30766774 [TBL] [Abstract][Full Text] [Related]
18. A simple confined impingement jets mixer for flash nanoprecipitation. Han J; Zhu Z; Qian H; Wohl AR; Beaman CJ; Hoye TR; Macosko CW J Pharm Sci; 2012 Oct; 101(10):4018-23. PubMed ID: 22777753 [TBL] [Abstract][Full Text] [Related]
19. Preparation of biodegradable nanoparticles of tri-block PLA-PEG-PLA copolymer and determination of factors controlling the particle size using artificial neural network. Asadi H; Rostamizadeh K; Salari D; Hamidi M J Microencapsul; 2011; 28(5):406-16. PubMed ID: 21736525 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and in vitro localization study of curcumin-loaded SPIONs in a micro capillary for simulating a targeted drug delivery system. Anwar M; Asfer M; Prajapati AP; Mohapatra S; Akhter S; Ali A; Ahmad FJ Int J Pharm; 2014 Jul; 468(1-2):158-64. PubMed ID: 24746694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]