These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 26143470)
1. Carbohydrate derivative-functionalized biosensing toward highly sensitive electrochemical detection of cell surface glycan expression as cancer biomarker. Zhang X; Lu W; Shen J; Jiang Y; Han E; Dong X; Huang J Biosens Bioelectron; 2015 Dec; 74():291-8. PubMed ID: 26143470 [TBL] [Abstract][Full Text] [Related]
2. Lectin-based biosensor strategy for electrochemical assay of glycan expression on living cancer cells. Zhang X; Teng Y; Fu Y; Xu L; Zhang S; He B; Wang C; Zhang W Anal Chem; 2010 Nov; 82(22):9455-60. PubMed ID: 20954719 [TBL] [Abstract][Full Text] [Related]
3. Development of Au nanoparticles dispersed carbon nanotube-based biosensor for the detection of paraoxon. Jha N; Ramaprabhu S Nanoscale; 2010 May; 2(5):806-10. PubMed ID: 20648328 [TBL] [Abstract][Full Text] [Related]
4. Competitive electrochemical sensing for cancer cell evaluation based on thionine-interlinked signal probes. Zhang X; Wang Z; Li X; Xiao W; Zou X; Huang Q; Zhou L Analyst; 2023 Feb; 148(4):912-918. PubMed ID: 36692060 [TBL] [Abstract][Full Text] [Related]
5. Electrochemical cytosensor based on gold nanoparticles for the determination of carbohydrate on cell surface. Ding C; Qian S; Wang Z; Qu B Anal Biochem; 2011 Jul; 414(1):84-7. PubMed ID: 21396908 [TBL] [Abstract][Full Text] [Related]
6. Flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen doped carbon nanotube arrays: In situ electrochemical detection in live cancer cells. Zhang Y; Xiao J; Sun Y; Wang L; Dong X; Ren J; He W; Xiao F Biosens Bioelectron; 2018 Feb; 100():453-461. PubMed ID: 28963962 [TBL] [Abstract][Full Text] [Related]
7. Sensitive electrochemical aptamer biosensor for dynamic cell surface N-glycan evaluation featuring multivalent recognition and signal amplification on a dendrimer-graphene electrode interface. Chen X; Wang Y; Zhang Y; Chen Z; Liu Y; Li Z; Li J Anal Chem; 2014 May; 86(9):4278-86. PubMed ID: 24684138 [TBL] [Abstract][Full Text] [Related]
8. A functional glycoprotein competitive recognition and signal amplification strategy for carbohydrate-protein interaction profiling and cell surface carbohydrate expression evaluation. Wang Y; Chen Z; Liu Y; Li J Nanoscale; 2013 Aug; 5(16):7349-55. PubMed ID: 23824149 [TBL] [Abstract][Full Text] [Related]
9. A repeatable assembling and disassembling electrochemical aptamer cytosensor for ultrasensitive and highly selective detection of human liver cancer cells. Sun D; Lu J; Chen Z; Yu Y; Mo M Anal Chim Acta; 2015 Jul; 885():166-73. PubMed ID: 26231902 [TBL] [Abstract][Full Text] [Related]
10. Triplex signal amplification for electrochemical DNA biosensing by coupling probe-gold nanoparticles-graphene modified electrode with enzyme functionalized carbon sphere as tracer. Dong H; Zhu Z; Ju H; Yan F Biosens Bioelectron; 2012 Mar; 33(1):228-32. PubMed ID: 22305443 [TBL] [Abstract][Full Text] [Related]
11. Sub-femtomolar DNA detection based on layered molybdenum disulfide/multi-walled carbon nanotube composites, Au nanoparticle and enzyme multiple signal amplification. Huang KJ; Liu YJ; Wang HB; Wang YY; Liu YM Biosens Bioelectron; 2014 May; 55():195-202. PubMed ID: 24384259 [TBL] [Abstract][Full Text] [Related]
12. Monose-modified organic electrochemical transistors for cell surface glycan analysis via competitive recognition to enzyme-labeled lectin. Chen L; Wu J; Yan F; Ju H Mikrochim Acta; 2021 Jul; 188(8):252. PubMed ID: 34255200 [TBL] [Abstract][Full Text] [Related]
13. Detection and discrimination of alpha-fetoprotein with a label-free electrochemical impedance spectroscopy biosensor array based on lectin functionalized carbon nanotubes. Yang H; Li Z; Wei X; Huang R; Qi H; Gao Q; Li C; Zhang C Talanta; 2013 Jul; 111():62-8. PubMed ID: 23622526 [TBL] [Abstract][Full Text] [Related]
14. Cu-Au nanocrystals functionalized carbon nanotube arrays vertically grown on carbon spheres for highly sensitive detecting cancer biomarker. Tran DT; Hoa VH; Tuan LH; Kim NH; Lee JH Biosens Bioelectron; 2018 Nov; 119():134-140. PubMed ID: 30125873 [TBL] [Abstract][Full Text] [Related]
15. Dual amplification strategy for the fabrication of highly sensitive interleukin-6 amperometric immunosensor based on poly-dopamine. Wang G; Huang H; Zhang G; Zhang X; Fang B; Wang L Langmuir; 2011 Feb; 27(3):1224-31. PubMed ID: 21174423 [TBL] [Abstract][Full Text] [Related]
16. Facile synthesis of β-lactoglobulin-functionalized multi-wall carbon nanotubes and gold nanoparticles on glassy carbon electrode for electrochemical sensing. Du X; Miao Z; Zhang D; Fang Y; Ma M; Chen Q Biosens Bioelectron; 2014 Dec; 62():73-8. PubMed ID: 24984286 [TBL] [Abstract][Full Text] [Related]
17. Organic Electrochemical Transistors for the Detection of Cell Surface Glycans. Chen L; Fu Y; Wang N; Yang A; Li Y; Wu J; Ju H; Yan F ACS Appl Mater Interfaces; 2018 Jun; 10(22):18470-18477. PubMed ID: 29749223 [TBL] [Abstract][Full Text] [Related]
18. Highly sensitive immunosensing of prostate-specific antigen based on ionic liquid-carbon nanotubes modified electrode: application as cancer biomarker for prostate biopsies. Salimi A; Kavosi B; Fathi F; Hallaj R Biosens Bioelectron; 2013 Apr; 42():439-46. PubMed ID: 23235113 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical growth of gold nanoparticles on horizontally aligned carbon nanotubes: a new platform for ultrasensitive DNA sensing. Li L; Wang S; Yang T; Huang S; Wang J Biosens Bioelectron; 2012 Mar; 33(1):279-83. PubMed ID: 22236779 [TBL] [Abstract][Full Text] [Related]
20. Immobilization of genetically engineered fusion proteins on gold-decorated carbon nanotube hybrid films for the fabrication of biosensor platforms. Park H; Park TJ; Huh YS; Choi BG; Ko S; Lee SY; Hong WH J Colloid Interface Sci; 2010 Oct; 350(2):453-8. PubMed ID: 20655054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]