BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 26143655)

  • 1. Structure-Encoded Global Motions and Their Role in Mediating Protein-Substrate Interactions.
    Bahar I; Cheng MH; Lee JY; Kaya C; Zhang S
    Biophys J; 2015 Sep; 109(6):1101-9. PubMed ID: 26143655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling between catalytic loop motions and enzyme global dynamics.
    Kurkcuoglu Z; Bakan A; Kocaman D; Bahar I; Doruker P
    PLoS Comput Biol; 2012; 8(9):e1002705. PubMed ID: 23028297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global dynamics of proteins: bridging between structure and function.
    Bahar I; Lezon TR; Yang LW; Eyal E
    Annu Rev Biophys; 2010; 39():23-42. PubMed ID: 20192781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of conformational motions and related key residue interactions responsible for a specific function of proteins with elastic network model.
    Su JG; Han XM; Zhang X; Hou YX; Zhu JZ; Wu YD
    J Biomol Struct Dyn; 2016; 34(3):560-71. PubMed ID: 25909329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptability of protein structures to enable functional interactions and evolutionary implications.
    Haliloglu T; Bahar I
    Curr Opin Struct Biol; 2015 Dec; 35():17-23. PubMed ID: 26254902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastic network models capture the motions apparent within ensembles of RNA structures.
    Zimmermann MT; Jernigan RL
    RNA; 2014 Jun; 20(6):792-804. PubMed ID: 24759093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An analysis of the influence of protein intrinsic dynamical properties on its thermal unfolding behavior.
    Su JG; Xu XJ; Li CH; Chen WZ; Wang CX
    J Biomol Struct Dyn; 2011 Aug; 29(1):105-21. PubMed ID: 21696228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MAVENs: motion analysis and visualization of elastic networks and structural ensembles.
    Zimmermann MT; Kloczkowski A; Jernigan RL
    BMC Bioinformatics; 2011 Jun; 12():264. PubMed ID: 21711533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of full-atomic and coarse-grained models to examine the molecular fluctuations of c-AMP dependent protein kinase.
    Keskin O
    J Biomol Struct Dyn; 2002 Dec; 20(3):333-45. PubMed ID: 12437372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient characterization of collective motions and interresidue correlations in proteins by low-resolution simulations.
    Bahar I; Erman B; Haliloglu T; Jernigan RL
    Biochemistry; 1997 Nov; 36(44):13512-23. PubMed ID: 9354619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shared Signature Dynamics Tempered by Local Fluctuations Enables Fold Adaptability and Specificity.
    Zhang S; Li H; Krieger JM; Bahar I
    Mol Biol Evol; 2019 Sep; 36(9):2053-2068. PubMed ID: 31028708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Protein Elastic Network Models Based on an Analysis of Collective Motions.
    Fuglebakk E; Reuter N; Hinsen K
    J Chem Theory Comput; 2013 Dec; 9(12):5618-28. PubMed ID: 26592296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using entropy maximization to understand the determinants of structural dynamics beyond native contact topology.
    Lezon TR; Bahar I
    PLoS Comput Biol; 2010 Jun; 6(6):e1000816. PubMed ID: 20585542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematic Flexibility Analysis: Hydrogen Bonding Patterns Impart a Spatial Hierarchy of Protein Motion.
    Budday D; Leyendecker S; van den Bedem H
    J Chem Inf Model; 2018 Oct; 58(10):2108-2122. PubMed ID: 30240209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing the intrinsic dynamics of multiple protein structures using elastic network models.
    Fuglebakk E; Tiwari SP; Reuter N
    Biochim Biophys Acta; 2015 May; 1850(5):911-922. PubMed ID: 25267310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of motions in membrane proteins by elastic network models and their experimental validation.
    Isin B; Tirupula KC; Oltvai ZN; Klein-Seetharaman J; Bahar I
    Methods Mol Biol; 2012; 914():285-317. PubMed ID: 22976035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pre-existing soft modes of motion uniquely defined by native contact topology facilitate ligand binding to proteins.
    Meireles L; Gur M; Bakan A; Bahar I
    Protein Sci; 2011 Oct; 20(10):1645-58. PubMed ID: 21826755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparisons of Protein Dynamics from Experimental Structure Ensembles, Molecular Dynamics Ensembles, and Coarse-Grained Elastic Network Models.
    Sankar K; Mishra SK; Jernigan RL
    J Phys Chem B; 2018 May; 122(21):5409-5417. PubMed ID: 29376347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale comparison of protein essential dynamics from molecular dynamics simulations and coarse-grained normal mode analyses.
    Ahmed A; Villinger S; Gohlke H
    Proteins; 2010 Dec; 78(16):3341-52. PubMed ID: 20848551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.