These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 26143655)

  • 41. Unstructural biology coming of age.
    Tompa P
    Curr Opin Struct Biol; 2011 Jun; 21(3):419-25. PubMed ID: 21514142
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Jumping between protein conformers using normal modes.
    Mahajan S; Sanejouand YH
    J Comput Chem; 2017 Jul; 38(18):1622-1630. PubMed ID: 28470912
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Consensus modes, a robust description of protein collective motions from multiple-minima normal mode analysis--application to the HIV-1 protease.
    Batista PR; Robert CH; Maréchal JD; Hamida-Rebaï MB; Pascutti PG; Bisch PM; Perahia D
    Phys Chem Chem Phys; 2010 Mar; 12(12):2850-9. PubMed ID: 20449375
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural dynamics of nucleosome core particle: comparison with nucleosomes containing histone variants.
    Ramaswamy A; Bahar I; Ioshikhes I
    Proteins; 2005 Feb; 58(3):683-96. PubMed ID: 15624215
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A comparative study of motor-protein motions by using a simple elastic-network model.
    Zheng W; Doniach S
    Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13253-8. PubMed ID: 14585932
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular evolution of protein conformational changes revealed by a network of evolutionarily coupled residues.
    Jeon J; Nam HJ; Choi YS; Yang JS; Hwang J; Kim S
    Mol Biol Evol; 2011 Sep; 28(9):2675-85. PubMed ID: 21470969
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of shape in determining molecular motions.
    Lu M; Ma J
    Biophys J; 2005 Oct; 89(4):2395-401. PubMed ID: 16055547
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Normal mode analysis of Trp RNA binding attenuation protein: structure and collective motions.
    Hu G; Michielssens S; Moors SL; Ceulemans A
    J Chem Inf Model; 2011 Sep; 51(9):2361-71. PubMed ID: 21870865
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Essential motions in a fungal lipase with bound substrate, covalently attached inhibitor and product.
    Peters GH; Bywater RP
    J Mol Recognit; 2002; 15(6):393-404. PubMed ID: 12501159
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of protein dynamics in reaction rate enhancement by enzymes.
    Agarwal PK
    J Am Chem Soc; 2005 Nov; 127(43):15248-56. PubMed ID: 16248667
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Low-frequency motions in protein molecules. Beta-sheet and beta-barrel.
    Chou KC
    Biophys J; 1985 Aug; 48(2):289-97. PubMed ID: 4052563
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Topology-based modeling of intrinsically disordered proteins: balancing intrinsic folding and intermolecular interactions.
    Ganguly D; Chen J
    Proteins; 2011 Apr; 79(4):1251-66. PubMed ID: 21268115
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structure-based network analysis of activation mechanisms in the ErbB family of receptor tyrosine kinases: the regulatory spine residues are global mediators of structural stability and allosteric interactions.
    James KA; Verkhivker GM
    PLoS One; 2014; 9(11):e113488. PubMed ID: 25427151
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intrinsic dynamics is evolutionarily optimized to enable allosteric behavior.
    Zhang Y; Doruker P; Kaynak B; Zhang S; Krieger J; Li H; Bahar I
    Curr Opin Struct Biol; 2020 Jun; 62():14-21. PubMed ID: 31785465
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Elastic network model of learned maintained contacts to predict protein motion.
    Putz I; Brock O
    PLoS One; 2017; 12(8):e0183889. PubMed ID: 28854238
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CoMoDo: identifying dynamic protein domains based on covariances of motion.
    Wieninger SA; Ullmann GM
    J Chem Theory Comput; 2015 Jun; 11(6):2841-54. PubMed ID: 26575576
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparable contributions of structural-functional constraints and expression level to the rate of protein sequence evolution.
    Wolf MY; Wolf YI; Koonin EV
    Biol Direct; 2008 Oct; 3():40. PubMed ID: 18840284
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A survey of flexible protein binding mechanisms and their transition states using native topology based energy landscapes.
    Levy Y; Cho SS; Onuchic JN; Wolynes PG
    J Mol Biol; 2005 Mar; 346(4):1121-45. PubMed ID: 15701522
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Using the folding landscapes of proteins to understand protein function.
    Giri Rao VV; Gosavi S
    Curr Opin Struct Biol; 2016 Feb; 36():67-74. PubMed ID: 26812092
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Markov methods for hierarchical coarse-graining of large protein dynamics.
    Chennubhotla C; Bahar I
    J Comput Biol; 2007; 14(6):765-76. PubMed ID: 17691893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.