These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 2614371)

  • 1. Kinetic time constants independent of previous single-channel activity suggest Markov gating for a large conductance Ca-activated K channel.
    McManus OB; Magleby KL
    J Gen Physiol; 1989 Dec; 94(6):1037-70. PubMed ID: 2614371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adjacent interval analysis distinguishes among gating mechanisms for the fast chloride channel from rat skeletal muscle.
    Blatz AL; Magleby KL
    J Physiol; 1989 Mar; 410():561-85. PubMed ID: 2477527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accounting for the Ca(2+)-dependent kinetics of single large-conductance Ca(2+)-activated K+ channels in rat skeletal muscle.
    McManus OB; Magleby KL
    J Physiol; 1991 Nov; 443():739-77. PubMed ID: 1822543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage-dependent gating mechanism for single fast chloride channels from rat skeletal muscle.
    Weiss DS; Magleby KL
    J Physiol; 1992; 453():279-306. PubMed ID: 1281503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Testing for microscopic reversibility in the gating of maxi K+ channels using two-dimensional dwell-time distributions.
    Song L; Magleby KL
    Biophys J; 1994 Jul; 67(1):91-104. PubMed ID: 7919030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic states and modes of single large-conductance calcium-activated potassium channels in cultured rat skeletal muscle.
    McManus OB; Magleby KL
    J Physiol; 1988 Aug; 402():79-120. PubMed ID: 3236256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gating scheme for single GABA-activated Cl- channels determined from stability plots, dwell-time distributions, and adjacent-interval durations.
    Weiss DS; Magleby KL
    J Neurosci; 1989 Apr; 9(4):1314-24. PubMed ID: 2539443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gating kinetics of single large-conductance Ca2+-activated K+ channels in high Ca2+ suggest a two-tiered allosteric gating mechanism.
    Rothberg BS; Magleby KL
    J Gen Physiol; 1999 Jul; 114(1):93-124. PubMed ID: 10398695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Compared Markov with fractal models by using single-channel experimental and simulation data].
    Lan T; Wu H; Lin J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):923-8. PubMed ID: 17121323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fractal models are inadequate for the kinetics of four different ion channels.
    McManus OB; Weiss DS; Spivak CE; Blatz AL; Magleby KL
    Biophys J; 1988 Nov; 54(5):859-70. PubMed ID: 2468366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional components and hidden dependencies provide insight into ion channel gating mechanisms.
    Rothberg BS; Bello RA; Magleby KL
    Biophys J; 1997 Jun; 72(6):2524-44. PubMed ID: 9168029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium dependence of open and shut interval distributions from calcium-activated potassium channels in cultured rat muscle.
    Magleby KL; Pallotta BS
    J Physiol; 1983 Nov; 344():585-604. PubMed ID: 6317853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional coupling of the beta(1) subunit to the large conductance Ca(2+)-activated K(+) channel in the absence of Ca(2+). Increased Ca(2+) sensitivity from a Ca(2+)-independent mechanism.
    Nimigean CM; Magleby KL
    J Gen Physiol; 2000 Jun; 115(6):719-36. PubMed ID: 10828246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic structure of large-conductance Ca2+-activated K+ channels suggests that the gating includes transitions through intermediate or secondary states. A mechanism for flickers.
    Rothberg BS; Magleby KL
    J Gen Physiol; 1998 Jun; 111(6):751-80. PubMed ID: 9607935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inversion of Markov processes to determine rate constants from single-channel data.
    Jackson MB
    Biophys J; 1997 Sep; 73(3):1382-94. PubMed ID: 9284305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of maxi-K channel activation by dehydrosoyasaponin-I.
    Giangiacomo KM; Kamassah A; Harris G; McManus OB
    J Gen Physiol; 1998 Oct; 112(4):485-501. PubMed ID: 9758866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gating of single non-Shaker A-type potassium channels in larval Drosophila neurons.
    Solc CK; Aldrich RW
    J Gen Physiol; 1990 Jul; 96(1):135-65. PubMed ID: 2212978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linking exponential components to kinetic states in Markov models for single-channel gating.
    Shelley C; Magleby KL
    J Gen Physiol; 2008 Aug; 132(2):295-312. PubMed ID: 18625850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative description of three modes of activity of fast chloride channels from rat skeletal muscle.
    Blatz AL; Magleby KL
    J Physiol; 1986 Sep; 378():141-74. PubMed ID: 2432249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion effects on gating of the Ca(2+)-activated K+ channel correlate with occupancy of the pore.
    Demo SD; Yellen G
    Biophys J; 1992 Mar; 61(3):639-48. PubMed ID: 1504240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.