These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 2614371)

  • 21. Quantitative description of three modes of activity of fast chloride channels from rat skeletal muscle.
    Blatz AL; Magleby KL
    J Physiol; 1986 Sep; 378():141-74. PubMed ID: 2432249
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ion effects on gating of the Ca(2+)-activated K+ channel correlate with occupancy of the pore.
    Demo SD; Yellen G
    Biophys J; 1992 Mar; 61(3):639-48. PubMed ID: 1504240
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gating kinetics of potassium channel in rat dorsal root ganglion neurons analyzed with fractal model.
    Lan TH; Liu XM; Yuan HJ; Lin JR
    Biophys Chem; 2003 Dec; 106(3):203-9. PubMed ID: 14556892
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inverse relationship of the durations of adjacent open and shut intervals for C1 and K channels.
    McManus OB; Blatz AL; Magleby KL
    Nature; 1985 Oct 17-23; 317(6038):625-7. PubMed ID: 2414664
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels.
    Horrigan FT; Aldrich RW
    J Gen Physiol; 2002 Sep; 120(3):267-305. PubMed ID: 12198087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Allosteric voltage gating of potassium channels II. Mslo channel gating charge movement in the absence of Ca(2+).
    Horrigan FT; Aldrich RW
    J Gen Physiol; 1999 Aug; 114(2):305-36. PubMed ID: 10436004
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multi-ion occupancy alters gating in high-conductance, Ca(2+)-activated K+ channels.
    Neyton J; Pelleschi M
    J Gen Physiol; 1991 Apr; 97(4):641-65. PubMed ID: 2056305
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Voltage and Ca2+ activation of single large-conductance Ca2+-activated K+ channels described by a two-tiered allosteric gating mechanism.
    Rothberg BS; Magleby KL
    J Gen Physiol; 2000 Jul; 116(1):75-99. PubMed ID: 10871641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proton modulation of a Ca(2+)-activated K+ channel from rat skeletal muscle incorporated into planar bilayers.
    Laurido C; Candia S; Wolff D; Latorre R
    J Gen Physiol; 1991 Nov; 98(5):1025-42. PubMed ID: 1662682
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-channel currents from diethylpyrocarbonate-modified NMDA receptors in cultured rat brain cortical neurons.
    Donnelly JL; Pallotta BS
    J Gen Physiol; 1995 Jun; 105(6):837-59. PubMed ID: 7561746
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gating models of the anomalous mole-fraction effect of single-channel current in Chara.
    Hansen UP; Cakan O; Abshagen-Keunecke M; Farokhi A
    J Membr Biol; 2003 Mar; 192(1):45-63. PubMed ID: 12647033
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mode of action of iberiotoxin, a potent blocker of the large conductance Ca(2+)-activated K+ channel.
    Candia S; Garcia ML; Latorre R
    Biophys J; 1992 Aug; 63(2):583-90. PubMed ID: 1384740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The beta subunit increases the Ca2+ sensitivity of large conductance Ca2+-activated potassium channels by retaining the gating in the bursting states.
    Nimigean CM; Magleby KL
    J Gen Physiol; 1999 Mar; 113(3):425-40. PubMed ID: 10051518
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Separation of gating properties from permeation and block in mslo large conductance Ca-activated K+ channels.
    Cox DH; Cui J; Aldrich RW
    J Gen Physiol; 1997 May; 109(5):633-46. PubMed ID: 9154909
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wanderlust kinetics and variable Ca(2+)-sensitivity of Drosophila, a large conductance Ca(2+)-activated K+ channel, expressed in oocytes.
    Silberberg SD; Lagrutta A; Adelman JP; Magleby KL
    Biophys J; 1996 Jun; 70(6):2640-51. PubMed ID: 8744301
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional effects of auxiliary beta4-subunit on rat large-conductance Ca(2+)-activated K(+) channel.
    Ha TS; Heo MS; Park CS
    Biophys J; 2004 May; 86(5):2871-82. PubMed ID: 15111404
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermodynamic and kinetic studies of the gating behavior of a K+-selective channel from the sarcoplasmic reticulum membrane.
    Labarca P; Coronado R; Miller C
    J Gen Physiol; 1980 Oct; 76(4):397-24. PubMed ID: 6255061
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved resolution of single channel dwell times reveals mechanisms of binding, priming, and gating in muscle AChR.
    Mukhtasimova N; daCosta CJ; Sine SM
    J Gen Physiol; 2016 Jul; 148(1):43-63. PubMed ID: 27353445
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Markov, fractal, diffusion, and related models of ion channel gating. A comparison with experimental data from two ion channels.
    Sansom MS; Ball FG; Kerry CJ; McGee R; Ramsey RL; Usherwood PN
    Biophys J; 1989 Dec; 56(6):1229-43. PubMed ID: 2482085
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two-dimensional kinetic analysis suggests nonsequential gating of mechanosensitive channels in Xenopus oocytes.
    Gil Z; Magleby KL; Silberberg SD
    Biophys J; 2001 Oct; 81(4):2082-99. PubMed ID: 11566780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.