These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26143716)

  • 1. One-Dimensional Sliding of p53 Along DNA Is Accelerated in the Presence of Ca(2+) or Mg(2+) at Millimolar Concentrations.
    Murata A; Ito Y; Kashima R; Kanbayashi S; Nanatani K; Igarashi C; Okumura M; Inaba K; Tokino T; Takahashi S; Kamagata K
    J Mol Biol; 2015 Aug; 427(16):2663-78. PubMed ID: 26143716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-Dimensional Search Dynamics of Tumor Suppressor p53 Regulated by a Disordered C-Terminal Domain.
    Murata A; Itoh Y; Mano E; Kanbayashi S; Igarashi C; Takahashi H; Takahashi S; Kamagata K
    Biophys J; 2017 Jun; 112(11):2301-2314. PubMed ID: 28591603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. p53 searches on DNA by rotation-uncoupled sliding at C-terminal tails and restricted hopping of core domains.
    Terakawa T; Kenzaki H; Takada S
    J Am Chem Soc; 2012 Sep; 134(35):14555-62. PubMed ID: 22880817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sliding of p53 along DNA can be modulated by its oligomeric state and by cross-talks between its constituent domains.
    Khazanov N; Levy Y
    J Mol Biol; 2011 Apr; 408(2):335-55. PubMed ID: 21338609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic interactions of p53 with DNA in solution by time-lapse atomic force microscopy.
    Jiao Y; Cherny DI; Heim G; Jovin TM; Schäffer TE
    J Mol Biol; 2001 Nov; 314(2):233-43. PubMed ID: 11718557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Disordered Linker in p53 Participates in Nonspecific Binding to and One-Dimensional Sliding along DNA Revealed by Single-Molecule Fluorescence Measurements.
    Subekti DRG; Murata A; Itoh Y; Fukuchi S; Takahashi H; Kanbayashi S; Takahashi S; Kamagata K
    Biochemistry; 2017 Aug; 56(32):4134-4144. PubMed ID: 28718283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How p53 Molecules Solve the Target DNA Search Problem: A Review.
    Kamagata K; Itoh Y; Subekti DRG
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32033163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsically disordered domain of tumor suppressor p53 facilitates target search by ultrafast transfer between different DNA strands.
    Itoh Y; Murata A; Takahashi S; Kamagata K
    Nucleic Acids Res; 2018 Aug; 46(14):7261-7269. PubMed ID: 29986056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-affinity binding of tumor-suppressor protein p53 and HMGB1 to hemicatenated DNA loops.
    Stros M; Muselíková-Polanská E; Pospísilová S; Strauss F
    Biochemistry; 2004 Jun; 43(22):7215-25. PubMed ID: 15170359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence-dependent sliding kinetics of p53.
    Leith JS; Tafvizi A; Huang F; Uspal WE; Doyle PS; Fersht AR; Mirny LA; van Oijen AM
    Proc Natl Acad Sci U S A; 2012 Oct; 109(41):16552-7. PubMed ID: 23012405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA bending due to specific p53 and p53 core domain-DNA interactions visualized by electron microscopy.
    Cherny DI; Striker G; Subramaniam V; Jett SD; Palecek E; Jovin TM
    J Mol Biol; 1999 Dec; 294(4):1015-26. PubMed ID: 10588903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scanning force microscopy of the complexes of p53 core domain with supercoiled DNA.
    Jett SD; Cherny DI; Subramaniam V; Jovin TM
    J Mol Biol; 2000 Jun; 299(3):585-92. PubMed ID: 10835269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sliding into home: facilitated p53 search for targets by the basic DNA binding domain.
    Liu Y; Kulesz-Martin MF
    Cell Death Differ; 2006 Jun; 13(6):881-4. PubMed ID: 16557271
    [No Abstract]   [Full Text] [Related]  

  • 14. Activation of p53 Facilitates the Target Search in DNA by Enhancing the Target Recognition Probability.
    Itoh Y; Murata A; Sakamoto S; Nanatani K; Wada T; Takahashi S; Kamagata K
    J Mol Biol; 2016 Jul; 428(14):2916-30. PubMed ID: 27291286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The disordered DNA-binding domain of p53 is indispensable for forming an encounter complex to and jumping along DNA.
    Graha Subekti DR; Kamagata K
    Biochem Biophys Res Commun; 2021 Jan; 534():21-26. PubMed ID: 33310183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient binding and jumping dynamics of p53 along DNA revealed by sub-millisecond resolved single-molecule fluorescence tracking.
    Subekti DRG; Murata A; Itoh Y; Takahashi S; Kamagata K
    Sci Rep; 2020 Aug; 10(1):13697. PubMed ID: 32792545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Free-Energy Barrier of 1D Diffusion Along DNA by Architectural DNA-Binding Proteins.
    Kamagata K; Mano E; Ouchi K; Kanbayashi S; Johnson RC
    J Mol Biol; 2018 Mar; 430(5):655-667. PubMed ID: 29307468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. p53 linear diffusion along DNA requires its C terminus.
    McKinney K; Mattia M; Gottifredi V; Prives C
    Mol Cell; 2004 Nov; 16(3):413-24. PubMed ID: 15525514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cognate DNA stabilizes the tumor suppressor p53 and prevents misfolding and aggregation.
    Ishimaru D; Ano Bom AP; Lima LM; Quesado PA; Oyama MF; de Moura Gallo CV; Cordeiro Y; Silva JL
    Biochemistry; 2009 Jul; 48(26):6126-35. PubMed ID: 19505151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The N terminus of the murine p53 tumour suppressor is an independent regulatory domain affecting activation and thermostability.
    Hansen S; Lane DP; Midgley CA
    J Mol Biol; 1998 Jan; 275(4):575-88. PubMed ID: 9466932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.