These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 2614377)

  • 1. Binding-protein-dependent sugar transport by Agrobacterium radiobacter and A. tumefaciens grown in continuous culture.
    Cornish A; Greenwood JA; Jones CW
    J Gen Microbiol; 1989 Nov; 135(11):3001-13. PubMed ID: 2614377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between glucose transport and the production of succinoglucan exopolysaccharide by Agrobacterium radiobacter.
    Cornish A; Greenwood JA; Jones CW
    J Gen Microbiol; 1988 Dec; 134(12):3111-22. PubMed ID: 3269387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding-protein-dependent glucose transport by Agrobacterium radiobacter grown in glucose-limited continuous culture.
    Cornish A; Greenwood JA; Jones CW
    J Gen Microbiol; 1988 Dec; 134(12):3099-110. PubMed ID: 3269386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agrobacterium radiobacter and related organisms take up fructose via a binding-protein-dependent active-transport system.
    Williams SG; Greenwood JA; Jones CW
    Microbiology (Reading); 1995 Oct; 141 ( Pt 10)():2601-10. PubMed ID: 7582021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding-protein-dependent lactose transport in Agrobacterium radiobacter.
    Greenwood JA; Cornish A; Jones CW
    J Bacteriol; 1990 Apr; 172(4):1703-10. PubMed ID: 2318800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The importance of the binding-protein-dependent Mgl system to the transport of glucose in Escherichia coli growing on low sugar concentrations.
    Death A; Ferenci T
    Res Microbiol; 1993 Sep; 144(7):529-37. PubMed ID: 8310178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the extracellular polysaccharide from Agrobacterium radiobacter biovar I S-1231.
    Yu N; Wang X; Shi Z; Shen A; Yao R; Chang L
    Chin J Biotechnol; 1994; 10(2):129-34. PubMed ID: 7803689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CARBOHYDRATE INHIBITORS OF SUCROSE UPTAKE BY RESTING CELLS OF AGROBACTERIUM TUMEFACIENS.
    FUKUI S; HOCHSTER RM
    Can J Biochem; 1964 Jul; 42():1023-31. PubMed ID: 14209393
    [No Abstract]   [Full Text] [Related]  

  • 9. Characterization of 5-aminolevulinate synthase from Agrobacterium radiobacter, screening new inhibitors for 5-aminolevulinate dehydratase from Escherichia coli and their potential use for high 5-aminolevulinate production.
    Lin J; Fu W; Cen P
    Bioresour Technol; 2009 Apr; 100(7):2293-7. PubMed ID: 19095441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Agrobacterium tumefaciens virulence gene chvE is part of a putative ABC-type sugar transport operon.
    Kemner JM; Liang X; Nester EW
    J Bacteriol; 1997 Apr; 179(7):2452-8. PubMed ID: 9079938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbohydrate utilization patterns and substrate preferences in Bacteroides thetaiotaomicron.
    Degnan BA; Macfarlane GT
    Anaerobe; 1995 Feb; 1(1):25-33. PubMed ID: 16887504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LPS-aggregating proteins GBP1 and GBP2 are each sufficient to enhance caspase-4 activation both in cellulo and in vitro.
    Dickinson MS; Kutsch M; Sistemich L; Hernandez D; Piro AS; Needham D; Lesser CF; Herrmann C; Coers J
    Proc Natl Acad Sci U S A; 2023 Apr; 120(15):e2216028120. PubMed ID: 37023136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes.
    Sawada H; Ieki H; Oyaizu H; Matsumoto S
    Int J Syst Bacteriol; 1993 Oct; 43(4):694-702. PubMed ID: 8240952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli.
    Jarmander J; Hallström BM; Larsson G
    Biotechnol Bioeng; 2014 Jun; 111(6):1108-15. PubMed ID: 24382675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drosophila cytokine GBP2 exerts immune responses and regulates GBP1 expression through GPCR receptor Mthl10.
    Ono M; Matsumura T; Sung EJ; Koyama T; Ochiai M; Shears SB; Hayakawa Y
    Insect Biochem Mol Biol; 2024 Apr; 167():104086. PubMed ID: 38295885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomics analysis of Bifidobacterium longum NCC2705 growing on glucose, fructose, mannose, xylose, ribose, and galactose.
    Liu D; Wang S; Xu B; Guo Y; Zhao J; Liu W; Sun Z; Shao C; Wei X; Jiang Z; Wang X; Liu F; Wang J; Huang L; Hu D; He X; Riedel CU; Yuan J
    Proteomics; 2011 Jul; 11(13):2628-38. PubMed ID: 21630463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two mechanisms for growth inhibition by elevated transport of sugar phosphates in Escherichia coli.
    Kadner RJ; Murphy GP; Stephens CM
    J Gen Microbiol; 1992 Oct; 138(10):2007-14. PubMed ID: 1479338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of sugar mixtures utilization by an Escherichia coli mutant devoid of the phosphotransferase system.
    Hernández-Montalvo V; Valle F; Bolivar F; Gosset G
    Appl Microbiol Biotechnol; 2001 Oct; 57(1-2):186-91. PubMed ID: 11693918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization and transport of glucose in Olea Europaea cell suspensions.
    Oliveira J; Tavares RM; Gerós H
    Plant Cell Physiol; 2002 Dec; 43(12):1510-7. PubMed ID: 12514248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters.
    Gonçalves DL; Matsushika A; de Sales BB; Goshima T; Bon EP; Stambuk BU
    Enzyme Microb Technol; 2014 Sep; 63():13-20. PubMed ID: 25039054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.