These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 26143808)

  • 1. High coverage adsorption and co-adsorption of CO and H2 on Ru(0001) from DFT and thermodynamics.
    Zhao P; He Y; Cao DB; Wen X; Xiang H; Li YW; Wang J; Jiao H
    Phys Chem Chem Phys; 2015 Jul; 17(29):19446-56. PubMed ID: 26143808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coverage dependent water dissociative adsorption on Fe(110) from DFT computation.
    Liu S; Tian X; Wang T; Wen X; Li YW; Wang J; Jiao H
    Phys Chem Chem Phys; 2015 Apr; 17(14):8811-21. PubMed ID: 25743027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coverage dependent adsorption and co-adsorption of CO and H₂ on the CdI₂-antitype metallic Mo₂C(001) surface.
    Wang T; Tian X; Yang Y; Li YW; Wang J; Beller M; Jiao H
    Phys Chem Chem Phys; 2015 Jan; 17(3):1907-17. PubMed ID: 25474365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of coverage dependent CO adsorption and dissociation on the Mo(100) surface.
    Tian X; Wang T; Jiao H
    Phys Chem Chem Phys; 2017 Jan; 19(3):2186-2192. PubMed ID: 28045154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Six-dimensional potential energy surface for H2 at Ru(0001).
    Luppi M; Olsen RA; Baerends EJ
    Phys Chem Chem Phys; 2006 Feb; 8(6):688-96. PubMed ID: 16482308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into both coverage and surface structure dependent CO adsorption and activation on different Ni surfaces from DFT and atomistic thermodynamics.
    Hao X; Wang B; Wang Q; Zhang R; Li D
    Phys Chem Chem Phys; 2016 Jun; 18(26):17606-18. PubMed ID: 27306737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning patterning conditions by co-adsorption of gases: Br2 and H2 on Si(001).
    Biswas S; Deshpande SV; Dunn DN; Narasimhan S
    J Chem Phys; 2013 Nov; 139(18):184713. PubMed ID: 24320297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption/desorption of H2 and CO on Zn-modified Pd(111).
    Tamtögl A; Kratzer M; Killman J; Winkler A
    J Chem Phys; 2008 Dec; 129(22):224706. PubMed ID: 19071938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The sticking probability for H2 on some transition metals at a hydrogen pressure of 1 bar.
    Johansson M; Lytken O; Chorkendorff I
    J Chem Phys; 2008 Jan; 128(3):034706. PubMed ID: 18205517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of seven molybdenum surfaces and their coverage dependent hydrogen adsorption.
    Wang T; Tian X; Yang Y; Li YW; Wang J; Beller M; Jiao H
    Phys Chem Chem Phys; 2016 Feb; 18(8):6005-12. PubMed ID: 26838012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical and experimental studies of hydrogen adsorption and desorption on Ir surfaces.
    Kaghazchi P; Jacob T; Chen W; Bartynski RA
    Phys Chem Chem Phys; 2013 Aug; 15(31):12815-20. PubMed ID: 23802224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular simulation for gas adsorption at NiO (100) surface.
    Wang B; Nisar J; Ahuja R
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5691-7. PubMed ID: 23027802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen adsorption on nickel (100) single-crystal face. A Monte Carlo study of the equilibrium and kinetics.
    Panczyk T; Szabelski P; Rudzinski W
    J Phys Chem B; 2005 Jun; 109(21):10986-94. PubMed ID: 16852339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prevalence of Bimolecular Routes in the Activation of Diatomic Molecules with Strong Chemical Bonds (O2, NO, CO, N2) on Catalytic Surfaces.
    Hibbitts D; Iglesia E
    Acc Chem Res; 2015 May; 48(5):1254-62. PubMed ID: 25921328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A theoretical study of H(2) dissociation on (sq.rt(3) x sq.rt(3))R30 degrees CO/Ru(0001).
    Groot IM; Juanes-Marcos JC; Olsen RA; Kroes GJ
    J Chem Phys; 2010 Apr; 132(14):144704. PubMed ID: 20406007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO blocking of D2 dissociative adsorption on Ru(0001).
    Ueta H; Groot IM; Gleeson MA; Stolte S; McBane GC; Juurlink LB; Kleyn AW
    Chemphyschem; 2008 Nov; 9(16):2372-8. PubMed ID: 18821538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetically limited CO adsorption: spill-over as a highly effective adsorption pathway on bimetallic surfaces.
    Hartmann H; Diemant T; Behm RJ
    Chemphyschem; 2013 Nov; 14(16):3801-5. PubMed ID: 24039117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO chemisorption and dissociation at high coverages during CO hydrogenation on Ru catalysts.
    Loveless BT; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2013 Apr; 135(16):6107-21. PubMed ID: 23480097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First principles analysis of H2O adsorption on the (110) surfaces of SnO2, TiO2 and their solid solutions.
    Hahn KR; Tricoli A; Santarossa G; Vargas A; Baiker A
    Langmuir; 2012 Jan; 28(2):1646-56. PubMed ID: 22149350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.