BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 2614396)

  • 1. Ultrastructural studies on the intracellular fate of Chlamydia psittaci (strain guinea pig inclusion conjunctivitis) and Chlamydia trachomatis (strain lymphogranuloma venereum 434): modulation of intracellular events and relationship with endocytic mechanism.
    Prain CJ; Pearce JH
    J Gen Microbiol; 1989 Jul; 135(7):2107-23. PubMed ID: 2614396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the cytochalasin D-resistant (pinocytic) mechanisms of endocytosis utilized by chlamydiae.
    Reynolds DJ; Pearce JH
    Infect Immun; 1990 Oct; 58(10):3208-16. PubMed ID: 2119341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endocytic mechanisms utilized by chlamydiae and their influence on induction of productive infection.
    Reynolds DJ; Pearce JH
    Infect Immun; 1991 Sep; 59(9):3033-9. PubMed ID: 1879929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of chlamydiae with host cells and mucous surfaces.
    Pearce JH; Allan I; Ainsworth S
    Ciba Found Symp; 1981; 80():234-49. PubMed ID: 6911075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The replication cycle of Chlamydia trachomatis and Chlamydia psittaci: ultrastructural analysis].
    Falcieri E; Cevenini R; Landini MP; Donati M
    Boll Ist Sieroter Milan; 1979 Nov; 58(5):395-405. PubMed ID: 553521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 28 kDa major immunogen of Chlamydia psittaci shares identity with Mip proteins of Legionella spp. and Chlamydia trachomatis-cloning and characterization of the C. psittaci mip-like gene.
    Rockey DD; Chesebro BB; Heinzen RA; Hackstadt T
    Microbiology (Reading); 1996 Apr; 142 ( Pt 4)():945-953. PubMed ID: 8936321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relation of basic biology to pathogenic potential in the genus Chlamydia.
    Moulder JW
    Infection; 1982; 10 Suppl 1():S10-8. PubMed ID: 7044979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entry of the lymphogranuloma venereum strain of Chlamydia trachomatis into host cells involves cholesterol-rich membrane domains.
    Jutras I; Abrami L; Dautry-Varsat A
    Infect Immun; 2003 Jan; 71(1):260-6. PubMed ID: 12496174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infectivity titration of guinea-pig inclusion conjunctivitis agent in irradiated McCoy cells.
    Griffiths MS; Ainsworth S; Pearce JH
    J Gen Microbiol; 1976 Aug; 96(2):249-56. PubMed ID: 986419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acid requirements of strains of Chlamydia trachomatis and C. psittaci growing in McCoy cells: relationship with clinical syndrome and host origin.
    Allan I; Pearce JH
    J Gen Microbiol; 1983 Jul; 129(7):2001-7. PubMed ID: 6631408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between a trachoma strain of Chlamydia trachomatis and mouse fibroblasts (McCoy cells) in the absence of centrifugation.
    Lee CK
    Infect Immun; 1981 Feb; 31(2):584-91. PubMed ID: 7216462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell death, BAX activation, and HMGB1 release during infection with Chlamydia.
    Jungas T; Verbeke P; Darville T; Ojcius DM
    Microbes Infect; 2004 Nov; 6(13):1145-55. PubMed ID: 15488733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal analysis of the developing Chlamydia psittaci inclusion by use of fluorescence and electron microscopy.
    Rockey DD; Fischer ER; Hackstadt T
    Infect Immun; 1996 Oct; 64(10):4269-78. PubMed ID: 8926099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth and effect of chlamydiae in human and bovine oviduct organ cultures.
    Hutchinson GR; Taylor-Robinson D; Dourmashkin RR
    Br J Vener Dis; 1979 Jun; 55(3):194-202. PubMed ID: 223717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructural study of endocytosis of Chlamydia trachomatis by McCoy cells.
    Hodinka RL; Davis CH; Choong J; Wyrick PB
    Infect Immun; 1988 Jun; 56(6):1456-63. PubMed ID: 3131245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of centrifugation on the infectivity of Chlamydia pneumoniae IOL-207.
    Donati M; Graciotti C; Di Francesco A; Pavan G; Bui C; Cevenini R
    New Microbiol; 1995 Jul; 18(3):315-8. PubMed ID: 7553369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Bcl-2 family members in caspase-independent apoptosis during Chlamydia infection.
    Perfettini JL; Reed JC; Israël N; Martinou JC; Dautry-Varsat A; Ojcius DM
    Infect Immun; 2002 Jan; 70(1):55-61. PubMed ID: 11748163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heparin-mediated inhibition of Chlamydia psittaci adherence to HeLa cells.
    Gutiérrez-Martín CB; Ojcius DM; Hsia R; Hellio R; Bavoil PM; Dautry-Varsat A
    Microb Pathog; 1997 Jan; 22(1):47-57. PubMed ID: 9032762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Chlamydia psittaci (strain guinea pig inclusion conjunctivitis) growth in McCoy cells by amino acid antagonism.
    Coles AM; Pearce JH
    J Gen Microbiol; 1987 Mar; 133(3):701-8. PubMed ID: 3655729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control mechanisms governing the infectivity of Chlamydia trachomatis for HeLa cells: mechanisms of endocytosis.
    Ward ME; Murray A
    J Gen Microbiol; 1984 Jul; 130(7):1765-80. PubMed ID: 6470672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.