BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 2614408)

  • 1. Experimental test of the influence of aquatic macrophyte cover on the survival of Anopheles larvae.
    Orr BK; Resh VH
    J Am Mosq Control Assoc; 1989 Dec; 5(4):579-85. PubMed ID: 2614408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prey selection by mosquitofish (Gambusia affinis) in California rice fields: effect of vegetation and prey species.
    Linden AL; Cech JJ
    J Am Mosq Control Assoc; 1990 Mar; 6(1):115-20. PubMed ID: 2324716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An evaluation of the mosquitofish, Gambusia affinis, and the inland silverside, Menidia beryllina, as mosquito control agents in California wild rice fields.
    Kramer VL; Garcia R; Colwell AE
    J Am Mosq Control Assoc; 1987 Dec; 3(4):626-32. PubMed ID: 2904970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative larvivorous performances of mosquitofish, Gambusia affinis, and juvenile Sacramento blackfish, Orthodon microlepidotus, in experimental paddies.
    Cech JJ; Linden AL
    J Am Mosq Control Assoc; 1987 Mar; 3(1):35-41. PubMed ID: 3504893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limnological and botanical characterization of larval habitats for two primary malarial vectors, Anopheles albimanus and Anopheles pseudopunctipennis, in coastal areas of Chiapas State, Mexico.
    Savage HM; Rejmankova E; Arredondo-Jim'enez JI; Roberts DR; Rodr'iguez MH
    J Am Mosq Control Assoc; 1990 Dec; 6(4):612-20. PubMed ID: 2098467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocontrol efficacy of Gerris (A) spinolae, Laccotrephes griseus and Gambusia affinis on larval mosquitoes.
    Ambrose T; Mani T; Vincent S; Kumar LC; Mathews KT
    Indian J Malariol; 1993 Dec; 30(4):187-92. PubMed ID: 8034107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of population densities and vegetation associations of Anopheles albimanus larvae in a coastal area of southern Chiapas, Mexico.
    Rodríguez AD; Rodríguez MH; Meza RA; Hernández JE; Rejmankova E; Savage HM; Roberts DR; Pope KO; Legters L
    J Am Mosq Control Assoc; 1993 Mar; 9(1):46-58. PubMed ID: 8468574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and detection of Anopheles vestitipennis and Anopheles punctimacula (Diptera: Culicidae) larval habitats in Belize with field survey and SPOT satellite imagery.
    Rejmankova E; Pope KO; Roberts DR; Lege MG; Andre R; Greico J; Alonzo Y
    J Vector Ecol; 1998 Jun; 23(1):74-88. PubMed ID: 9673933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of interspecific competition, predation, and their interaction on survival and development time of immature Anopheles quadrimaculatus.
    Knight TM; Chase JM; Goss CW; Knight JJ
    J Vector Ecol; 2004 Dec; 29(2):277-84. PubMed ID: 15707287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the bionomics of Anopheles dirus (Culicidae: Diptera) in Mudon, Mon State, Myanmar.
    Oo TT; Storch V; Becker N
    J Vector Ecol; 2002 Jun; 27(1):44-54. PubMed ID: 12125872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An evaluation of Gambusia affinis and Bacillus thuringiensis var. israelensis as mosquito control agents in California wild rice fields.
    Kramer VL; Garcia R; Colwell AE
    J Am Mosq Control Assoc; 1988 Dec; 4(4):470-8. PubMed ID: 2906358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of the exotic fish Gambusia affinis (Baird and Girard) on some natural predators of immature mosquitoes.
    el Safi SH; Haridi AA; el Rabaa FM
    J Trop Med Hyg; 1985 Apr; 88(2):175-8. PubMed ID: 4032526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence ofMyriophyllum aquaticum cover onAnopheles mosquito abundance, oviposition, and larval microhabitat.
    Orr BK; Resh VH
    Oecologia; 1992 Jul; 90(4):474-482. PubMed ID: 28313566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of mosquito predation by the fish Pseudomugil signifier Kner and Gambusia holbrooki (Girard) in laboratory trials.
    Willems KJ; Webb CE; Russell RC
    J Vector Ecol; 2005 Jun; 30(1):87-90. PubMed ID: 16007960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of Culex tarsalis larvae in a freshwater marsh in Orange County, California.
    Walton WE; Schreiber ET; Mulla MS
    J Am Mosq Control Assoc; 1990 Sep; 6(3):539-43. PubMed ID: 2230789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association between land cover and habitat productivity of malaria vectors in western Kenyan highlands.
    Munga S; Minakawa N; Zhou G; Mushinzimana E; Barrack OO; Githeko AK; Yan G
    Am J Trop Med Hyg; 2006 Jan; 74(1):69-75. PubMed ID: 16407348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial distributions of Anopheles freeborni, Gambusia affinis and Lepomis cyanellus in experimental rice plots.
    Blaustein L
    J Am Mosq Control Assoc; 1989 Jun; 5(2):254-7. PubMed ID: 2746211
    [No Abstract]   [Full Text] [Related]  

  • 18. [Experimental study of larval efficiency of Gambusia affinis holbrooki (GIRARD, 1859) (fish-Poecilidae)].
    Ghrab J; Bouattour A
    Arch Inst Pasteur Tunis; 1999; 76(1-4):33-8. PubMed ID: 14666756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Larval habitats of anopheline mosquitoes in the Upper Orinoco, Venezuela.
    Rejmánková E; Rubio-Palis Y; Villegas L
    J Vector Ecol; 1999 Dec; 24(2):130-7. PubMed ID: 10672542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The practical importance of permanent and semipermanent habitats for controlling aquatic stages of Anopheles gambiae sensu lato mosquitoes: operational observations from a rural town in western Kenya.
    Fillinger U; Sonye G; Killeen GF; Knols BG; Becker N
    Trop Med Int Health; 2004 Dec; 9(12):1274-89. PubMed ID: 15598259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.